987 resultados para Input Technology
Resumo:
Pleurotus ostreatus, worldwide known as oyster mushroom, was cultivated in banana straw using inocula produced by two different processes - liquid inoculum and the traditionally used solid inoculum. Different ratios (5, 10, 15, and 20%) were tested. Biological efficiency, yield, productivity, organic matter loss, and moisture of fruiting bodies as well as physical-chemical characteristics of banana straw were studied. Significant differences were observed for cellulose, lignin, and hemicellulose content between one and two harvests for both solid and liquid inocula. It was observed that P. ostreatus growth promoted higher degradation of lignin (80.36%), followed by hemicellulose (78.64%) and cellulose (60.37%). Significant differences between one and two harvests were also observed for the production parameters (biological efficiency and yield) for both kinds of inocula, liquid and solid. However, significant differences in productivity between harvests were observed only for solid inoculum.
Resumo:
In this study, water uptake by poultry carcasses during cooling by water immersion was modeled using artificial neural networks. Data from twenty-five independent variables and the final mass of the carcass were collected in an industrial plant to train and validate the model. Different network structures with one hidden layer were tested, and the Downhill Simplex method was used to optimize the synaptic weights. In order to accelerate the optimization calculus, Principal Component Analysis (PCA) was used to preprocess the input data. The obtained results were: i) PCA reduced the number of input variables from twenty-five to ten; ii) the neural network structure 4-6-1 was the one with the best result; iii) PCA gave the following order of importance: parameters of mass transfer, heat transfer, and initial characteristics of the carcass. The main contributions of this work were to provide an accurate model for predicting the final content of water in the carcasses and a better understanding of the variables involved.
Resumo:
The peel of jaboticaba is attractive regarding its nutritional, functional and sensory aspects. However, its use for consumption is still restricted due to the need of technological development in order to obtain processed preparations for its inclusion in the human diet. The purpose of this study was to produce jelly using the peel of jaboticaba and to characterize it chemically and sensorially. Diferent formulations were prepared, all with 50% of sugar and with different proportions of peel, pulp and pectin. The formulations, which were tested for preference, were the following: F1a (80% of peel, 20% of pulp and 0.5% of pectin) and F3b (50% of peel, 50% pulp and 1.0% of pectin). These formulations showed chemical composition of 216.44 mg phenolic compounds, 148.00 mg gallic acid.100 g-1, 10.42 mg flavonoids, and 12.10 mg catechin.100 g-1, and 80% acceptability index. The peel presented higher levels of nutrients than the pulp, especially as source of fiber, carbohydrates and natural pigments. Results indicated the feasibility of technological nutritional harnessing of the jaboticaba peel in obtaining jelly. The results also indicated good sensory and nutritional characteristics, acceptability, and antioxidant properties of natural pigments.