980 resultados para Innate response


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of structural dynamical systems excited by multiple random excitations is considered. Two new procedures for evaluating global response sensitivity measures with respect to the excitation components are proposed. The first procedure is valid for stationary response of linear systems under stationary random excitations and is based on the notion of Hellinger's metric of distance between two power spectral density functions. The second procedure is more generally valid and is based on the l2 norm based distance measure between two probability density functions. Specific cases which admit exact solutions are presented, and solution procedures based on Monte Carlo simulations for more general class of problems are outlined. Illustrations include studies on a parametrically excited linear system and a nonlinear random vibration problem involving moving oscillator-beam system that considers excitations attributable to random support motions and guide-way unevenness. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline powders of Ba1-xMgxZr0.1Ti0.9O3 (x = 0.025-0.1) were synthesized via citrate assisted sol-gel method. Interestingly, the one with x = 0.05 in the system Ba1-xMgxZr0.1Ti0.9O3 exhibited fairly good piezoelectric response aside from the other physical properties. The phase and structural confirmation of synthesized powder was established by X-ray powder diffraction (XRD) and Raman Spectroscopic techniques. Two distinct Raman bands i.e., 303 and 723 cm(-1) characteristic of tetragonal phase were observed. Thermogravimetric analysis (TGA) was performed to evaluate the phase decomposition of the as-synthesized Ba0.95Mg0.05Zr0.1Ti0.9O3 sample as a function of temperature. The average crystallite size associated with Ba0.95Mg0.05Zr0.1Ti0.9O3 was calculated using Scherrer formula based on the XRD data and was found to be 25 nm. However, Scanning and Transmission Electron Microscopy studies revealed the average crystallite size to be in the range of 30-40 nm, respectively. Kubelka-Munk function was employed to determine the optical band gap of these nanocrystallites. A piezoelectric response of 26 pm/V was observed for Ba0.95Mg0.05Zr0.1Ti0.9O3 nanocrystal by Piezoresponse Force Microscopy (PFM) technique. Photoluminescence (PL) study carried out on these nanocrystals exhibited a blue emission (470 nm) at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu3+ ion by electric field on a model system Eu-doped 0.94(Na1/2Bi1/2TiO3)-0.06(BaTiO3). We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar geoengineering has been proposed as a potential means to counteract anthropogenic climate change, yet it is unknown how such climate intervention might affect the Earth's climate on the millennial time scale. Here we use the HadCM3L model to conduct a 1000year sunshade geoengineering simulation in which solar irradiance is uniformly reduced by 4% to approximately offset global mean warming from an abrupt quadrupling of atmospheric CO2. During the 1000year period, modeled global climate, including temperature, hydrological cycle, and ocean circulation of the high-CO2 simulation departs substantially from that of the control preindustrial simulation, whereas the climate of the geoengineering simulation remains much closer to that of the preindustrial state with little drift. The results of our study do not support the hypothesis that nonlinearities in the climate system would cause substantial drift in the climate system if solar geoengineering was to be deployed on the timescale of a millennium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three mechanisms operate during wear of materials. These mechanisms include the Strain Rate Response (SRR - effect of strain rate on plastic deformation), Tribo-Chemical Reactions (TCR) and formation of Mechanically Mixed Layers (MML). The present work investigates the effect of these three in context of the formation of MML. For this wear experiments are done on a pin-on-disc machine using Ti64 as the pin and SS316L as the disc. It is seen that apart from the speed and load, which control the SRR and TCR, the diameter of the pin controls the formation of MML, especially at higher speeds.