978 resultados para Inheritance and succession--Massachusetts
Resumo:
The objective of this work was to evaluate the microbiological and chemical attributes of a soil with a seven‑year history of urea and swine manure application. In the period from October 2008 to October 2009, soil samples were collected in the 0-10 cm layer and were subjected to the treatments: control, without application of urea or manure; and with the application of urea, pig slurry, and deep pig litter in two doses, in order to supply one or two times the recommended N doses for the maize (Zea mays)/black oat (Avena strigosa) crop succession. The carbon of the microbial biomass (MB‑C) and the basal respiration (C‑CO2) were analyzed, and the metabolic (qCO2) and microbial quotient (qmic) were calculated with the obtained data. Organic matter, pH in water, available P and K, and exchangeable Ca and Mg were also determined. The application of twice the dose of deep pig litter increases the MB‑C and C‑CO2 values. The qmic and qCO2 are little affected by the application of swine manure. The application of twice the dose of deep pig litter increases the values of pH in water and the contents of available P and of exchangeable Ca and Mg in the soil.
Resumo:
The objective of this work was to determine the inheritance mode of seed coat color in sesame. Two crosses and their reciprocals were performed: UCLA37 x UCV3 and UCLA90 x UCV3, of which UCLA37 and UCLA90 are white seed, and UCV3 is brown seed. Results of reciprocal crosses within each cross were identical: F1 seeds had the same phenotype as the maternal parent, and F2 resulted in the phenotype brown color. These results are consistent only with the model in which the maternal effect is the responsible for this trait. This model was validated by recording the seed coat color of 100 F2 plants (F3 seeds) from each cross with its reciprocal, in which the 3:1 expected ratio for plants producing brown and white seeds was tested with the chi-square test. Sesame seed color is determined by the maternal genotype. Proposed names for the alleles participating in sesame seed coat color are: Sc1, for brown color; and Sc2, for white color; Sc1 is dominant over Sc2.
Resumo:
The objective of this work was to determine the inheritance of the long juvenile period trait in natural variants of the Doko, BR 9 (Savana), Davis, Embrapa 1 (IAS 5RC), and BR 16 soybean cultivars. Complete diallel crosses were made between the Doko and BR 16 cultivars and their variants. A 3:1 segregation ratio was observed in the F2 populations of the 'Doko' x Doko-18T, 'Doko' x Doko-Milionária, 'Davis' x São Carlos, and 'BR 9 (Savana)' x MABR92-836 (Savanão) crosses, indicating that the long juvenile period trait is controlled by a pair of recessive genes. The difference in late flowering between the Doko cultivar and both of its variants was caused by a recessive spontaneous mutation at the same genetic locus. However, the variants Doko-18T and Doko-Milionária are identical mutants that share a pair of genes that control the long juvenile period under short-day conditions. These mutants can be used in breeding programs to develop cultivars adapted to low-latitude tropical regions.