984 resultados para Illegal waste disposal
Resumo:
The aim of the thesis was both to study wooden packaging waste reuse and refining generated in the forestry machine factory environment, and to find alternative wooden packaging waste utilization options in order to create a new operating model which would decrease the overall amount of waste produced. As environmental and waste legislation has become more rigid and companies' own environmental management systems’ requirements and control have increased, companies have had to consider their environmental aspects more carefully. Companies have to take into account alternative ways of reducing waste through an increase in reuse and recycling. A part of this waste is from different forms of packaging. In the metal industry the most heavily used packaging material is wooden packaging, as such material is heavy and the packaging has to be able to bear heavy stress. In the theoretical part of the thesis, the requirements of packaging and packaging waste legislation, as well as environmental management systems governing companies’ processing of their packaging waste, are studied. The theoretical part includes a process study of systems, which direct packaging waste and wooden packaging waste refining. In addition, methods related to the continuous improvement of these processes are introduced. This thesis concentrates on designing and creating a new operating model in relation to wooden packaging waste processing. The main target was to find an efficient model in order to decrease the total amount of wooden packaging waste and to increase refining. The empirical part introduces methods for approaches to wooden packaging waste re-utilization, as well as a description of a new operating model and its impact.
Resumo:
Spent nickel catalyst (SNC) has the potential of insulting the quality of the environment in a number of ways. Its disposal has a pollution effect. Optimum recovery of fat from SNC, could save the environment and reduce the oil loss. Hexane has been the solvent of choice for oil extraction. Alternative solvents considered to have been safer have been evaluated. Hexane, isopropanol, ethanol and heptane were examined using soxhlet extraction. While hexane is more efficient in oil recovery from SNC, isopropanol proved to be very good in clear separation of oil from waste material and also provides high solvent recovery compared to other solvents. Isopropanol extraction with chill separation of miscella into lower oil-rich phase, and an upper, solvent-rich recyclable phase save mush energy of vaporization for distilling. An aqueous extraction process with immiscible solvent assisted was tested. Solvent like hexane added to SNC, and water added later with continuous stirring. The mixture was stirred for about 30 minutes, prior to centrifugation. Aqueous process extracted less amount of oil compared to solvent extraction.
Resumo:
Alfa Laval Aalborg Oy designs and manufactures waste heat recovery systems utilizing extended surfaces. The waste heat recovery boiler considered in this thesis is a water-tube boiler where exhaust gas is used as the convective heat transfer medium and water or steam flowing inside the tubes is subject to cross-flow. This thesis aims to contribute to the design of waste heat recovery boiler unit by developing a numerical model of the H-type finned tube bundle currently used by Alfa Laval Aalborg Oy to evaluate the gas-side heat transfer performance. The main objective is to identify weaknesses and potential areas of development in the current H-type finned tube design. In addition, numerical simulations for a total of 15 cases with varying geometric parameters are conducted to investigate the heat transfer and pressure drop performance dependent on H-type fin geometry. The investigated geometric parameters include fin width and height, fin spacing, and fin thickness. Comparison between single and double tube type configuration is also conducted. Based on the simulation results, the local heat transfer and flow behaviour of the H-type finned tube is presented including boundary layer development between the fins, the formation of recirculation zone behind the tubes, and the local variations of flow velocity and temperature within the tube bundle and on the fin surface. Moreover, an evaluation of the effects of various fin parameters on heat transfer and pressure drop performance of H-type finned tube bundle has been provided. It was concluded that from the studied parameters fin spacing and fin width had the most significant effect on tube bundle performance and the effect of fin thickness was the least important. Furthermore, the results suggested that the heat transfer performance would increase due to enhanced turbulence if the current double tube configuration is replaced with single tube configuration, but further investigation and experimental measurements are required in order to validate the results.
Resumo:
This study was carried out to evaluate the antioxidant capacity of the agro-industrial waste from acerola. Hydroacetone, hydroethanolic, and hydromethanolic extracts were obtained using the sequential extraction process, and they were screened for their free radical DPPH (1,1-diphenyl-2-picrilhidrazil) and ABTS+ (2,2'-azino-bis-(3-etilbenzotiazolin 6-sulfonic acid) scavenging activity and their effect on the linoleic acid peroxidation by the ferric thiocyanate method. Soybean oil with the addition of the extracts (200 ppm) was submitted to Schaal oven test (60 °C, 28 days), in which the samples were analyzed for peroxide value and conjugated dienes. Hydroethanolic and hydromethanolic extracts exhibited good DPPH scavenging activity (low value of EC50 and TEC50 and high value of AE), good ABTS scavenging capacity (1445.1 and 1145.5 µMol TEAC.g-1, respectively), and high percentage inhibition of peroxidation of linoleic acid (96.12 and 91.84%, respectively) and showed the ability to retard the formation of peroxides and conjugated dienes.
Resumo:
There is a trend towards the use of novel technologies nowadays, mainly focused on biological processes, for recycling and the efficient utilization of organic residues that can be metabolized by different microorganisms as a source of energy. In the present study the isolation of bacterial strains from six different agro-industrial by-products and waste was performed with the objective of evaluating their hydrolytic capacities and suitability for use in bioconversion of specific substrates. The 34 isolated strains were screened in specific culture media for the production of various hydrolytic enzymes (lipase, protease, cellulase, and amylase). It was found that 28 strains exhibited proteolytic activity, 18 had lipolytic activity, 13 had caseinolytic activity, 15 had amylolytic activity, and 11 strains exhibited cellulolytic activity. The strains that showed the highest hydrolytic capacities with biotechnological potential were selected, characterized genotipically, and identified as Bacillus, Serratia, Enterococcus, Klebsiella, Stenotrophomonas, Lactococcus, and Escherichia genera. It was concluded that the strain isolates have a high potential for use in the bioconversion of agro-industrial waste, both as a pure culture and as a microbial consortium.
Resumo:
Acerola is a fruit that can be consumed in the form of juice and pulp. However, during its processing, a large amount of waste is generated (seed and bagasse). Adding value to these by-products is of great interest, since their use can enrich foods with nutrients and fiber. In this study, we performed phytochemical screening, determined the proximate and mineral composition, bioactive compounds and the technological functional properties of acerola seed flour and acerola bagasse flour. Seeds were dried in a ventilated oven at ± 45 °C and the bagasse was lyophilized. Samples were ground, stored in flasks protected from light. Phytochemical screening revealed metabolites of nutritional and pharmacological interest and no potentially toxic substances in the flours. Seed flour and bagasse flour showed high levels (g 100 g- 1 of dry matter - DM) of soluble fiber: 4.76 and 8.74; insoluble fiber: 75.76 and 28.58, and phenolic compounds: 4.73 and 10.82, respectively. The flours also showed high absorption of water, oil and emulsion stability, presenting potential for inclusion in meat products and bakery products.
Resumo:
Potato pulp waste (PPW) drying was investigated under different experimental conditions (temperatures from 50 to 70 °C and air flow from 0.06 to 0.092 m³ m- 2 s- 1) as a possible way to recover the waste generated by potato chip industries and to select the best-fit model to the experimental results of PPW drying. As a criterion to evaluate the fitting of mathematical models, a method based on the sum of the scores assigned to the four evaluated statistical parameters was used: regression coefficient (R²), relative mean error P (%), root mean square error (RMSE), and reduced chi-square (χ²). The results revealed that temperature and air velocity are important parameters to reduce PPW drying time. The models Midilli and Diffusion had the lowest sum values, i.e., with the best fit to the drying data, satisfactorily representing the drying kinetics of PPW.
Resumo:
The fish industry generates high volume of waste from fish oil that can have the extraction of its lipids used as nutraceuticals and foods. The objective of this study was to produce unsaturated fatty acids from industrialized fish oil by means of a differentiated hydrolysis process. The samples used were crude fish oil obtained from Campestre industry and characterized through physical-chemical parameters, according to AOCS: acidity, peroxide, saponification, iodine and percentage of free fatty acids and also obtained the fatty acid profile through derivatization method for gas chromatography. The results obtained for the oleochemical indices for refined oil were similar to the data found on the literature. The content of polyunsaturated fatty acids (PUFA) was found of 32,78%, with 9,12% of docosahexaenoic (DHA) and 10,36% of eicosapentaenoic (EPA), regarding monounsaturated fatty acids (MUFA) content was of 30,59% in the hydrolyzed fish oil in relation to refined (20,06%). Thus, it can be concluded that the hydrolysis process used for oils from fish-waste was satisfactory on the production of absolute yield of lipids in the process and significant preservation on the percentages of EPA and DHA, interesting on the production of nutraceuticals and nutrition of aquatic animals, including shrimp in captivity.
Resumo:
Abstract Biodegradable films blends made of safflower oil nutraceutical capsules waste corn starch (20:4, 30:4, 40:4 and 50:4) were prepared. The objective of this study was to evaluate the influence of addition of different concentrations of safflower oil nutraceutical capsule waste in the mechanical properties (tensile strength, elongation at break, Young’s modulus) and thickness of corn starch films. A decrease in tensile strength and Young’s modulus and an increase in elongation at break were observed with the increase in the content of the nutraceutical capsule waste. The results showed that the blends of safflower oil capsules waste-corn starch films demonstrated promising characteristics to form biodegradable films with different mechanical characteristics.