995 resultados para INORGANIC FRAMEWORK
Resumo:
Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose-response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4-10.9 mg/kg bw) or nitrate (0.1-10 mg/kg bw). To study flavanol-nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial function when ingested together.
Resumo:
Purpose We study particular structural and organisational factors affecting the formality of human resource management (HRM) practices in small and medium-sized enterprises (SMEs) in South-Eastern European (SEE) post-communist countries, in particular Serbia, Romania, Bulgaria and the Former Yugoslav Republic of Macedonia (FYROM) in order to understand the antecedents of formalization in such settings. Design/methodology/approach Adopting a quantitative approach, this study analyses data gathered through a survey of 168 managers of SMEs from throughout the region. Findings The results show that HRM in SMEs in the SEE region can be understood through a three-fold framework which includes: degree of internationalisation of SMEs, sector of SMEs and organisational size of SMEs. These three factors positively affect the level of HRM formalisation in SEE SMEs. These findings are further attributed to the particular political and economic context of the post-communist SEE region. Research limitations/implications Although specific criteria were set for SME selection, we do not suggest that the study reflects a representative picture of the SEE region because we used a purposive sampling methodology. Practical implications This article provides useful insights into the factors which influence HRM in SMEs in a particular context. The findings can help business owners and managers understand how HRM can be applied in smaller organisations, particularly in post-communist SEE business contexts. Originality/value HRM in SMEs in this region has hardly been studied at all despite their importance. Therefore, this exploratory research seeks to expand knowledge relating to the application of HRM in SMEs in SEE countries which have their business environments dominated by different dynamics in comparison to western European ones.
Resumo:
The extent to which a given extreme weather or climate event is attributable to anthropogenic climate change is a question of considerable public interest. From a scientific perspective, the question can be framed in various ways, and the answer depends very much on the framing. One such framing is a risk-based approach, which answers the question probabilistically, in terms of a change in likelihood of a class of event similar to the one in question, and natural variability is treated as noise. A rather different framing is a storyline approach, which examines the role of the various factors contributing to the event as it unfolded, including the anomalous aspects of natural variability, and answers the question deterministically. It is argued that these two apparently irreconcilable approaches can be viewed within a common framework, where the most useful level of conditioning will depend on the question being asked and the uncertainties involved.
A decision framework for considering climate change adaptation in biodiversity conservation planning
Resumo:
General principles of climate change adaptation for biodiversity have been formulated, but do not help prioritize actions. This is inhibiting their integration into conservation planning. We address this need with a decision framework that identifies and prioritizes actions to increase the adaptive capacity of species. The framework classifies species according to their current distribution and projected future climate space, as a basis for selecting appropriate decision trees. Decisions rely primarily on expert opinion, with additional information from quantitative models, where data are available. The framework considers in-situ management, followed by interventions at the landscape scale and finally translocation or ex-situ conservation. Synthesis and applications: From eight case studies, the key interventions identified for integrating climate change adaptation into conservation planning were local management and expansion of sites. We anticipate that, in combination with consideration of socio-economic and local factors, the decision framework will be a useful tool for conservation and natural resource managers to integrate adaptation measures into conservation plans.
Resumo:
This study focuses on regional entrepreneurial ecosystems and offers a complex model of start-ups, Regional Entrepreneurship and Development Index (REDI) and six domains of the entrepreneurial ecosystem (culture, formal institutions, infrastructure and amenities, IT, Melting Pot and demand). Altogether they capture the contextual features of socioeconomic, institutional and information environment in cities. To explain variations in entrepreneurship in a cross-section of 70 European cities, we utilize exploratory factor analysis and structural equation modelling for regional systems of entrepreneurship using individual perception surveys by Eurostat and the REDI. This study supports policymakers and scholars in development of new policies conducive to regional systems of innovation and entrepreneurship and serves as a basis for future research on urban entrepreneurial ecosystems.
Resumo:
Our aim was to compare the osteogenic potential of mononuclear cells harvested from the iliac crest combined with bovine bone mineral (BBM) (experimental group) with that of autogenous cancellous bone alone (control group). We studied bilateral augmentations of the sinus floor in 6 adult sheep. BBM and mononuclear cells (MNC) were mixed and placed into one side and autogenous bone in the other side. Animals were killed after 8 and 16 weeks. Sites of augmentation were analysed radiographically and histologically. The mean (SD) augmentation volume was 3.0 (1.0) cm(3) and 2.7 (0.3) cm(3) after 8 and 16 weeks in the test group, and 2.8 (0.3) cm(3) (8 weeks) and 2.8 (1.2) cm(3) (16 weeks) in the control group, respectively. After 8 weeks, histomorphometric analysis showed 24 (3)% BBM, and 19 (11)% of newly formed bone in the test group. The control group had 20 (13%) of newly formed bone. Specimens after 16 weeks showed 29 (12%) of newly formed bone and 19 (3%) BBM in the test group. The amount of newly formed bone in the control group was 16 (6%). The results show that mononuclear cells, including mesenchymal stem cells, in combination with BBM as the biomaterial, have the potential to form bone. (C) 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Resumo:
Based on the fact that streamwater quality reflects landscape conditions, the objectives of this study were: to investigate nitrogen (N), carbon (C), and major ion concentrations in six streams crossing minimally disturbed Atlantic Forest areas, with similar geomorphological characteristics; to determine N and C fluxes in one of these pristine streams (Indaia); and assess the impact of human activity on the biogeochemistry of two other streams in the same region, crossing urbanized areas. The distribution pattern of carbon and inorganic nitrogen dissolved forms, as well as the major ion and biogenic gas concentrations in the streamwater, was similar in pristine streams, indicating that the C and N dynamics were determined by influence of some factors, such as climate, atmospheric deposition, geology, soil type, and land covering, which were analogous in the forested watersheds. The urban streams were significantly different from the pristine streams, showing low dissolved oxygen concentrations, high respiration rates, and high concentrations of carbon dioxide, dissolved inorganic nitrogen, dissolved inorganic carbon, and major ion. These differences were attributed to anthropogenic impact on water quality, especially domestic sewage discharge. Additionally, in the Indaia stream, it was possible to observe the importance of rainfall over temporal dynamics of dissolved carbon forms, and also, the obtained specific flux of dissolved inorganic nitrogen was relatively elevated (approximately 11 kg ha(-1) year(-1)). These results reveal the influence of human activity over the biogeochemistry of coastal streams and also indicate the importance N export of Atlantic Forest to the ocean.
Resumo:
Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e. g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the Least-Square Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outperform 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster definition and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data points as well as four types of surface renderings. A second user study evaluates the suitability of these visual encodings. Several examples illustrate the framework`s applicability for both visual exploration of multidimensional abstract (non-spatial) data as well as the feature space of multi-variate spatial data.
Resumo:
In many data sets from clinical studies there are patients insusceptible to the occurrence of the event of interest. Survival models which ignore this fact are generally inadequate. The main goal of this paper is to describe an application of the generalized additive models for location, scale, and shape (GAMLSS) framework to the fitting of long-term survival models. in this work the number of competing causes of the event of interest follows the negative binomial distribution. In this way, some well known models found in the literature are characterized as particular cases of our proposal. The model is conveniently parameterized in terms of the cured fraction, which is then linked to covariates. We explore the use of the gamlss package in R as a powerful tool for inference in long-term survival models. The procedure is illustrated with a numerical example. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The concentrations of the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-), were measured from September to November 2002 at a pasture site in the Amazon Basin (Rondnia, Brazil) (LBA-SMOCC). Measurements were conducted using a semi-continuous technique (Wet-annular denuder/Steam-Jet Aerosol Collector: WAD/SJAC) and three integrating filter-based methods, namely (1) a denuder-filter pack (DFP: Teflon and impregnated Whatman filters), (2) a stacked-filter unit (SFU: polycarbonate filters), and (3) a High Volume dichotomous sampler (HiVol: quartz fiber filters). Measurements covered the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). Analyses of the particles collected on filters were performed using ion chromatography (IC) and Particle-Induced X-ray Emission spectrometry (PIXE). Season-dependent discrepancies were observed between the WAD/SJAC system and the filter-based samplers. During the dry season, when PM2.5 (D-p <= 2.5 mu m) concentrations were similar to 100 mu g m(-3), aerosol NH4+ and SO42- measured by the filter-based samplers were on average two times higher than those determined by the WAD/SJAC. Concentrations of aerosol NO3- and Cl- measured with the HiVol during daytime, and with the DFP during day- and nighttime also exceeded those of the WAD/SJAC by a factor of two. In contrast, aerosol NO3- and Cl- measured with the SFU during the dry season were nearly two times lower than those measured by the WAD/SJAC. These differences declined markedly during the transition period and towards the cleaner conditions during the onset of the wet season (PM2.5 similar to 5 mu g m(-3)); when filter-based samplers measured on average 40-90% less than the WAD/SJAC. The differences were not due to consistent systematic biases of the analytical techniques, but were apparently a result of prevailing environmental conditions and different sampling procedures. For the transition period and wet season, the significance of our results is reduced by a low number of data points. We argue that the observed differences are mainly attributable to (a) positive and negative filter sampling artifacts, (b) presence of organic compounds and organosulfates on filter substrates, and (c) a SJAC sampling efficiency of less than 100%.
Resumo:
The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs ""radio-hybrid"" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The gravitational properties of a straight cosmic string are studied in the linear approximation of higher-derivative gravity. These properties are shown to be very different from those found using linearized Einstein gravity: there exists a short range gravitational (anti-gravitational) force in the nonrelativistic limit; in addition, the derection angle of a light ray moving in a plane orthogonal to the string depends on the impact parameter.
Resumo:
The relationship between thought and language and, in particular, the issue of whether and how language influences thought is still a matter of fierce debate. Here we consider a discrimination task scenario to study language acquisition in which an agent receives linguistic input from an external teacher, in addition to sensory stimuli from the objects that exemplify the overlapping categories that make up the environment. Sensory and linguistic input signals are fused using the Neural Modelling Fields (NMF) categorization algorithm. We find that the agent with language is capable of differentiating object features that it could not distinguish without language. In this sense, the linguistic stimuli prompt the agent to redefine and refine the discrimination capacity of its sensory channels. (C) 2007 Elsevier Ltd. All rights reserved.