996 resultados para INCLUSIVE PRODUCTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Present experimental data on nucleon-antinucleon scattering allow a study of the possibility of a phase transition in a nucleon-antinucleon gas at high temperature. Estimates can be made of the general behavior of the elastic phase shifts without resorting to theoretical derivation. A phase transition which separates nucleons from antinucleons is found at about 280 MeV in the approximation of the second virial coefficient to the free energy of the gas.

Part II

The parton model is used to derive scaling laws for the hadrons observed in deep inelastic electron-nucleon scattering which lie in the fragmentation region of the virtual photon. Scaling relations are obtained in the Bjorken and Regge regions. It is proposed that the distribution functions become independent of both q2 and ν where the Bjorken and Regge regions overlap. The quark density functions are discussed in the limit x→1 for the nucleon octet and the pseudoscalar mesons. Under certain plausible assumptions it is found that only one or two quarks of the six types of quarks and antiquarks have an appreciable density function in the limit x→1. This has implications for the quark fragmentation functions near the large momentum boundary of their fragmentation region. These results are used to propose a method of measuring the proton and neutron quark density functions for all x by making measurements on inclusively produced hadrons in electroproduction only. Implications are also discussed for the hadrons produced in electron-positron annihilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in our knowledge of the genetic structure of human caliciviruses (HuCVs) and small round-structured viruses (SRSVs) have led to the development of polymerase chain reaction (PCR)-based molecular tests specific for these viruses. These methods have been developed to detect a number of human pathogenic viruses in environmental samples including water, sewage and shellfish. HuCVs and SRSVs are not culturable, and no animal model is currently available. Therefore there is no convenient method of preparing viruses for study or for reagent production. One problem facing those attempting to use PCR-based methods for the detection of HuCVs and SRSVs is the lack of a suitable positive control substrate. This is particularly important when screening complex samples in which the levels of inhibitors present may significantly interfere with amplificiation. Regions within the RNA polymerase regions of two genetically distinct human caliciviruses have been amplified and used to produce recombinant baculoviruses which express RNA corresponding to the calicivirus polymerase. This RNA is being investigated as a positive control substrate for PCR testing, using current diagnostic primer sets. Recombinant baculovirus technology will enable efficient and cost-effective production of large quantities of positive control RNA with a specific known genotype. We consider the development of these systems as essential for successful screening and monitoring applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct measurement of in situ respiring bacteria using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) shows that, especially for Gram-negative bacteria, large numbers of viable but non-culturable (VBNC) bacteria are present in finished water from a conventional water treatment plant, and the regrowth of bacteria along distribution networks can be seen rapidly by using this very sensitive technique. The level of bacterial inactivation with chlorine is much less important than has been previously supposed (based on experiments with non-injured laboratory strains of bacteria and classical culture techniques). Threshold values of VBNC bacteria leaving water treatment plants or regrowing along distribution systems have to be determined for better control of coliform regrowth and health- risks associated with the consumption of drinking water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been estimated that in England and Wales fresh water covers some 340 square miles of which about one quarter is inhabited mainly by salmon and trout; in Scotland the lakes cover an area of 340 square miles. The principal object of this publication is to make available in handy form some of the methods, especially those involving the use of manures, by which crops of fish from water can be increased. The cultivation of water which this implies may be compared directly to the cultivation of farm land: the conditions for growth are made as favourable as possible, the seed is sown in the form of young fish, and after one or perhaps two growing seasons the crop is harvested. There are however many waters about the country where marketable fish are already available and can be removed without prejudice to, and indeed to the advantage of, sporting fisheries. In such cases it is necessary only to remove the fish and to rely on the natural processes of reproduction of those which are left to repopulate the water. Farming waters in the true sense is the concern of the greater part of this publication; the removal of crops of otherwise unwanted fish is considered in the last two sections on perch trapping and eel fisheries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to investigate the functional role of syllables in sign language and how the different phonological combinations influence sign production. Moreover, the influence of age of acquisition was evaluated. Deaf signers (native and non-native) of Catalan Signed Language (LSC) were asked in a picture-sign interference task to sign picture names while ignoring distractor-signs with which they shared two phonological parameters (out of three of the main sign parameters: Location, Movement, and Handshape). The results revealed a different impact of the three phonological combinations. While no effect was observed for the phonological combination Handshape-Location, the combination Handshape-Movement slowed down signing latencies, but only in the non-native group. A facilitatory effect was observed for both groups when pictures and distractors shared Location-Movement. Importantly, linguistic models have considered this phonological combination to be a privileged unit in the composition of signs, as syllables are in spoken languages. Thus, our results support the functional role of syllable units during phonological articulation in sign language production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This PhD work started in March 2010 with the support of the University of the Basque Country (UPV/EHU) under the program named “Formación de Personal Investigador” at the Chemical and Environmental Engineering Department in the Faculty of Engineering of Bilbao. The major part of the Thesis work was carried out in the mentioned department, as a member of the Sustainable Process Engineering (SuPrEn) research group. In addition, this PhD Thesis includes the research work developed during a period of 6 months at the Institut für Mikrotechnik Mainz GmbH, IMM, in Germany. During the four years of the Thesis, conventional and microreactor systems were tested for several feedstocks renewable and non-renewable, gases and liquids through several reforming processes in order to produce hydrogen. For this purpose, new catalytic formulations which showed high activity, selectivity and stability were design. As a consequence, the PhD work performed allowed the publication of seven scientific articles in peer-reviewed journals. This PhD Thesis is divided into the following six chapters described below. The opportunity of this work is established on the basis of the transition period needed for moving from a petroleum based energy system to a renewable based new one. Consequently, the present global energy scenario was detailed in Chapter 1, and the role of hydrogen as a real alternative in the future energy system was justified based on several outlooks. Therefore, renewable and non-renewable hydrogen production routes were presented, explaining the corresponding benefits and drawbacks. Then, the raw materials used in this Thesis work were described and the most important issues regarding the processes and the characteristics of the catalytic formulations were explained. The introduction chapter finishes by introducing the concepts of decentralized production and process intensification with the use of microreactors. In addition, a small description of these innovative reaction systems and the benefits that entailed their use were also mentioned. In Chapter 2 the main objectives of this Thesis work are summarized. The development of advanced reaction systems for hydrogen rich mixtures production is the main objective. In addition, the use and comparison between two different reaction systems, (fixed bed reactor (FBR) and microreactor), the processing of renewable raw materials, the development of new, active, selective and stable catalytic formulations, and the optimization of the operating conditions were also established as additional partial objectives. Methane and natural gas (NG) steam reforming experimental results obtained when operated with microreactor and FBR systems are presented in Chapter 3. For these experiments nickel-based (Ni/Al2O3 and Ni/MgO) and noble metal-based (Pd/Al2O3 and Pt/Al2O3) catalysts were prepared by wet impregnation and their catalytic activity was measured at several temperatures, from 973 to 1073 K, different S/C ratios, from 1.0 to 2.0, and atmospheric pressure. The Weight Hourly Space Velocity (WHSV) was maintained constant in order to compare the catalytic activity in both reaction systems. The results obtained showed a better performance of the catalysts operating in microreactors. The Ni/MgO catalyst reached the highest hydrogen production yield at 1073 K and steam-to-carbon ratio (S/C) of 1.5 under Steam methane Reforming (SMR) conditions. In addition, this catalyst also showed good activity and stability under NG reforming at S/C=1.0 and 2.0. The Ni/Al2O3 catalyst also showed high activity and good stability and it was the catalyst reaching the highest methane conversion (72.9 %) and H2out/CH4in ratio (2.4) under SMR conditions at 1073 K and S/C=1.0. However, this catalyst suffered from deactivation when it was tested under NG reforming conditions. Regarding the activity measurements carried out with the noble metal-based catalysts in the microreactor systems, they suffered a very quick deactivation, probably because of the effects attributed to carbon deposition, which was detected by Scanning Electron Microscope (SEM). When the FBR was used no catalytic activity was measured with the catalysts under investigation, probably because they were operated at the same WHSV than the microreactors and these WHSVs were too high for FBR system. In Chapter 4 biogas reforming processes were studied. This chapter starts with an introduction explaining the properties of the biogas and the main production routes. Then, the experimental procedure carried out is detailed giving concrete information about the experimental set-up, defining the parameters measured, specifying the characteristics of the reactors used and describing the characterization techniques utilized. Each following section describes the results obtained from activity testing with the different catalysts prepared, which is subsequently summarized: Section 4.3: Biogas reforming processes using γ-Al2O3 based catalysts The activity results obtained by several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 are presented in this section. In addition, an alumina-based commercial catalyst was tested in order to compare the activity results measured. Four different biogas reforming processes were studied using a FBR: dry reforming (DR), biogas steam reforming (BSR), biogas oxidative reforming (BOR) and tri-reforming (TR). For the BSR process different steam to carbon ratios (S/C) from 1.0 to 3.0, were tested. In the case of BOR process the oxygen-to-methane (O2/CH4) ratio was varied from 0.125 to 0.50. Finally, for TR processes different S/C ratios from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were studied. Then, the catalysts which achieved high activity and stability were impregnated in a microreactor to explore the viability of process intensification. The operation with microreactors was carried out under the best experimental conditions measured in the FBR. In addition, the physicochemical characterization of the fresh and spent catalysts was carried out by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), N2 physisorption, H2 chemisorption, Temperature Programmed Reduction (TPR), SEM, X-ray Photoelectron Spectroscopy (XPS) and X-ray powder Diffraction (XRD). Operating with the FBR, conversions close to the ones predicted by thermodynamic calculations were obtained by most of the catalysts tested. The Rh-Ni/Ce-Al2O3 catalyst obtained the highest hydrogen production yield in DR. In BSR process, the Ni/Ce-Al2O3 catalyst achieved the best activity results operating at S/C=1.0. In the case of BOR process, the Ni/Ce-Zr-Al2O3 catalyst showed the highest reactants conversion values operating at O2/CH4=0.25. Finally, in the TR process the Rh-Ni/Ce-Al2O3 catalyst obtained the best results operating at S/C=1.0 and O2/CH4=0.25. Therefore, these three catalysts were selected to be coated onto microchannels in order to test its performance under BOR and TR processes conditions. Although the operation using microreactors was carried out under considerably higher WHSV, similar conversions and yields as the ones measured in FBR were measured. Furthermore, attending to other measurements like Turnover Frequency (TOF) and Hydrogen Productivity (PROD), the values calculated for the catalysts tested in microreactors were one order of magnitude higher. Thus, due to the low dispersion degree measured by H2-chemisorption, the Ni/Ce-Al2O3 catalyst reached the highest TOF and PROD values. Section 4.4: Biogas reforming processes using Zeolites L based catalysts In this section three type of L zeolites, with different morphology and size, were synthesized and used as catalyst support. Then, for each type of L zeolite three nickel monometallic and their homologous Rh-Ni bimetallic catalysts were prepared by the wetness impregnation method. These catalysts were tested using the FBR under DR process and different conditions of BSR (S/C ratio of 1.0 and 2.0), BOR (O2/CH4 ratio of 0.25 and 0.50) and TR processes (at S/C=1.0 and O2/CH4=0.25). The characterization of these catalysts was also carried out by using the same techniques mentioned in the previous section. Very high methane and carbon dioxide conversion values were measured for almost all the catalysts under investigation. The experimental results evidenced the better catalytic behavior of the bimetallic catalysts as compared to the monometallic ones. Comparing the catalysts behavior with regards to their morphology, for the BSR process the Disc catalysts were the most active ones at the lowest S/C ratio tested. On the contrary, the Cylindrical (30–60 nm) catalysts were more active under BOR conditions at O2/CH4=0.25 and TR processes. By the contrary, the Cylindrical (1–3 µm) catalysts showed the worst activity results for both processes. Section 4.5: Biogas reforming processes using Na+ and Cs+ doped Zeolites LTL based catalysts A method for the synthesis of Linde Type L (LTL) zeolite under microwave-assisted hydrothermal conditions and its behavior as a support for heterogeneously catalyzed hydrogen production is described in this section. Then, rhodium and nickel-based bimetallic catalysts were prepared in order to be tested by DR process and BOR process at O2/CH4=0.25. Moreover, the characterization of the catalysts under investigation was also carried out. Higher activities were achieved by the catalysts prepared from the non-doped zeolites, Rh-Ni/D and Rh-Ni/N, as compared to the ones supported on Na+ and Cs+ exchanged supports. However, the differences between them were not very significant. In addition, the Na+ and Cs+ incorporation affected mainly to the Disc catalysts. Comparing the results obtained by these catalysts with the ones studied in the section 4.4, in general worst results were achieved under DR conditions and almost the same results when operated under BOR conditions. In Chapter 5 the ethylene glycol (EG) as feed for syngas production by steam reforming (SR) and oxidative steam reforming (OSR) was studied by using microchannel reactors. The product composition was determined at a S/C of 4.0, reaction temperatures between 625°C and 725°C, atmospheric pressure and Volume Hourly Space Velocities (VHSV) between 100 and 300 NL/(gcath). This work was divided in two sections. The first one corresponds to the introduction of the main and most promising EG production routes. Then, the new experimental procedure is detailed and the information about the experimental set-up and the measured parameters is described. The characterization was carried out using the same techniques as for the previous chapter. Then, the next sections correspond to the catalytic activity and catalysts characterization results. Section 5.3: xRh-cm and xRh-np catalysts for ethylene glycol reforming Initially, catalysts with different rhodium loading, from 1.0 to 5.0 wt. %, and supported on α-Al2O3 were prepared by two different preparation methods (conventional impregnation and separate nanoparticle synthesis). Then, the catalysts were compared regarding their measured activity and selectivity, as well as the characterization results obtained before and after the activity tests carried out. The samples prepared by a conventional impregnation method showed generally higher activity compared to catalysts prepared from Rh nanoparticles. By-product formation of species such as acetaldehyde, ethane and ethylene was detected, regardless if oxygen was added to the feed or not. Among the catalysts tested, the 2.5Rh-cm catalyst was considered the best one. Section 5.4: 2.5Rh-cm catalyst support modification with CeO2 and La2O3 In this part of the Chapter 5, the catalyst showing the best performance in the previous section, the 2.5Rh-Al2O3 catalyst, was selected in order to be improved. Therefore, new Rh based catalysts were designed using α-Al2O3 and being modified this support with different contents of CeO2 or La2O3 oxides. All the catalysts containing additives showed complete conversion and selectivities close to the equilibrium in both SR and OSR processes. In addition, for these catalysts the concentrations measured for the C2H4, CH4, CH3CHO and C2H6 by-products were very low. Finally, the 2.5Rh-20Ce catalyst was selected according to its catalytic activity and characterization results in order to run a stability test, which lasted more than 115 hours under stable operation. The last chapter, Chapter 6, summarizes the main conclusions achieved throughout this Thesis work. Although very high reactant conversions and rich hydrogen mixtures were obtained using a fixed bed reaction system, the use of microreactors improves the key issues, heat and mass transfer limitations, through which the reforming reactions are intensified. Therefore, they seem to be a very interesting and promising alternative for process intensification and decentralized production for remote application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

English: Recent calls for a more holistic approach to fisheries management have motivated development of trophic mass-balance models of ecosystems that underlie fisheries production. We developed a model hypothesis of the pelagic ecosystem in the eastern tropical Pacific Ocean (ETP) to gain insight into the relationships among the various species in the system and to explore the ecological implications of alternative methods of harvesting tunas. We represented the biomasses of and fluxes between the principal elements in the ecosystem with Ecopath, and examined the ecosystem's dynamic, time-series behavior with Ecosim. We parameterized the model for 38 species or groups of species, and described the sources, justifications, assumptions, and revisions of our estimates of the various parameters, diet relations, fisheries landings, and fisheries discards in the model. We conducted sensitivity analyses with an intermediate version of the model, for both the Ecopath mass-balance and the dynamic trajectories predicted by Ecosim. The analysis showed that changes in the basic parameters for two components at middle trophic levels, Cephalopods and Auxis spp., exert the greatest influence on the system. When the Cephalopod Q/B and Auxis spp. P/B were altered from their initial values and the model was rebalanced, the trends of the biomass trajectories predicted by Ecosim were not sensitive, but the scaling was sensitive for several components. We described the review process the model was subjected to, which included reviews by the IATTC Purse-seine Bycatch Working Group and by a working group supported by the National Center for Ecological Analysis and Synthesis. We fitted the model to historical time series of catches per unit of effort and mortality rates for yellowfin and bigeye tunas in simulations that incorporated historical fishing effort and a climate driver to represent the effect of El Niño-Southern Oscillation-scale variation on the system. The model was designed to evaluate the possible ecological implications of fishing for tunas in various ways. We recognize that a model cannot possibly represent all the complexity of a pelagic ocean ecosystem, but we believe that the ETP model provides insight into the structure and function of the pelagic ETP. Spanish: Llamamientos recientes hacia un enfoque más holístico al ordenamiento de la pesca han motivado el desarrollo de modelos tróficos de balance de masas de los ecosistemas que sostienen la producción pesquera. Desarrollamos una hipótesis modelo del ecosistema pelágico en el Océano Pacífico oriental tropical (POT) con miras a mejorar los conocimientos de las relaciones entre las distintas especies en el sistema y explorar las implicaciones ecológicas de métodos alternativos de capturar atunes. Con Ecopath representamos las biomasas de los elementos principales en el ecosistema, y los flujos entre los mismos, y con Ecosim examinamos el comportamiento dinámico del ecosistema con el tiempo. Parametrizamos el modelo para 38 especies o grupos de especies (denominados “componentes” del modelo), y describimos las fuentes, justificaciones, supuestos, y revisiones de nuestras estimaciones de los distintos parámetros, relaciones basadas en dieta, capturas retenidas de las pesquerías, y descartes de las mismas en el modelo. Realizamos análisis de sensibilidad con una versión intermedia del modelo, para el balance de masas de Ecopath y las trayectorias dinámicas predichas por Ecosim también. El análisis demostró que cambios en los parámetros básicos para dos componentes en niveles tróficos medianos, Cefalópodos y Auxis spp., ejercieron la mayor influencia sobre el sistema. Cuando se alteraron el Q/B de los Cefalópodos y el P/B de los Auxis spp. de sus valores iniciales y se balanceó el modelo de nuevo, las tendencias de las trayectorias de la biomasa predichas por Ecosim no fueron sensibles, pero la escala fue sensible para varios componentes. Describimos el proceso de revisión al que fue sujeto el modelo, inclusive revisiones por el Grupo de Trabajo sobre Captura Incidental de la CIAT y un grupo de trabajo apoyado por el Centro Nacional para Síntesis y Análisis Ecológicos. Ajustamos el modelo a series de tiempo históricas de capturas por unidad de esfuerzo y tasas de mortalidad de atunes aleta amarilla y patudo en simulaciones que incorporaron esfuerzo de pesca histórico e impulsos climáticos para representar el efecto de variaciones a escala de El Niño-Oscilación del Sur sobre el sistema. El modelo fue diseñado para evaluar las posibles implicaciones ecológicas de la pesca atunera de varias formas. Reconocemos la imposibilidad de que el modelo represente toda la complejidad de un ecosistema oceánico pelágico, pero creemos que el modelo del POT mejora los conocimientos de la estructura y función del POT pelágico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerando-se este importante momento de transição em que as tradicionais matrizes energéticas são paulatinamente substituídas por um conjunto de fontes renováveis, das quais os biocombustíves sobressaem-se pela capacidade de contribuir para o meio ambiente, trazendo igualmente benefícios econômicos e sociais a seus produtores; o presente trabalho visa contribuir para o panorama energético global que se começa a se delinear. Diante da impotência do Estado em lidar hodiernamente com determinadas questões, testemunha-se a participação de atores privados (organizações não governamentais, empresas transnacionais e sociedade civil, entre outros) atuando como vetores na transmissão de compromissos internacionais junto a estruturas nacionais para a solução de problemas comuns da humanidade. A essa nova arquitetura jurídica e política convencionou-se designar de governança global. Diante da inexistência de uma governança energética global que opere no interesse de países importadores, exportadores e investidores do setor de energia, agindo também como promotora de desenvolvimento social e econômico junto a países em desenvolvimento; e, por fim, em face da ausência de uma regulação internacional exclusiva na área energética, o presente estudo se dedica a investigar as possibilidades de disciplinamento do comércio internacional dos biocombustíveis. Admitindo-se o relevante desempenho que o Brasil detém na produção e exportação deste produto, inclusive na área tecnológica, a presente tese busca identificar o foro adequado, condições justas de produção, investimento, concessão de subsídios, adoção de medidas técnicas, de compra e venda, concorrência entre outros itens que o tema relaciona.