989 resultados para Hydrothermal Alteration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimum conditions were selected for chromatographic separation of model mixtures of C12-C40 n-alkanes. For one of samples of hydrothermal deposits extraction conditions of hydrocarbons were studied and a sample preparation procedure was selected. The procedure was proposed to determine n-alkanes in samples of hydrothermal deposits by means of gas chromatography - mass spectrometry (GC-MS). Detection limit for n-alkanes was 3x10**-9 to 10**-8% depending on components. On the basis of the proposed procedure composition of n-alkanes was studied in samples of hydrothermal deposits collected at the Mid-Atlantic Ridge (Broken Spur, Lost City, and Rainbow hydrothermal fields). Analyses showed that samples contained C14-C35 n-alkanes. Concentrations of the n-alkanes were rather low and varied from 0.002 to 0.038 µg/g. Hypotheses concerning genesis of identified n-alkanes were offered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DSDP Hole 504B is the deepest basement hole in the oceanic crust, penetrating through a 571.5 m pillow section, a 209 m lithologic transition zone, and 295 m into a sheeted dike complex. An oxygen isotopic profile through the upper crust at Site 504 is similar to that in many ophiolite complexes, where the extrusive section is enriched in 18O relative to unaltered basalts, and the dike section is variably depleted and enriched. Basalts in the pillow section at Site 504 have delta 18O values generally ranging from +6.1 to +8.5? SMOW (mean= +7.0?), although minor zeolite-rich samples range up to 12.7?. Rocks depleted in 18O appear abruptly at 624 m sub-basement in the lithologic transition from 100% pillows to 100% dikes, coinciding with the appearance of greenschist facies minerals in the rocks. Whole-rock values range to as low as +3.6?, but the mean values for the lithologic transition zone and dike section are +5.8 and +5.4?, respectively. Oxygen and carbon isotopic data for secondary vein minerals combined with the whole rock data provide evidence for the former presence of two distinct circulation systems separated by a relatively sharp boundary at the top of the lithologic transition zone. The pillow section reacted with seawater at low temperatures (near 0°C up to a maximum of around 150°C) and relatively high water/rock mass ratios (10-100); water/rock ratios were greater and conditions were more oxidizing during submarine weathering of the uppermost 320 m than deeper in the pillow section. The transition zone and dikes were altered at much higher temperatures (up to about 350°C) and generally low water/rock mass ratios (~1), and hydrothermal fluids probably contained mantle-derived CO2. Mixing of axial hydrothermal fluids upwelling through the dike section with cooler seawater circulating in the overlying pillow section resulted in a steep temperature gradient (~2.5°C/m) across a 70 m interval at the top of the lithologic transition zone. Progressive reaction during axial hydrothermal metamorphism and later off-axis alteration led to the formation of albite- and Ca-zeolite-rich alteration halos around fractures. This enhanced the effects of cooling and 18O enrichment of fluids, resulting in local increases in delta 18O of rocks which had been previously depleted in 18O during prior axial metamorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with dD values from -64per mil to -25per mil. All samples are enriched in water relative to fresh basalts. The dD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with d13C values from -14.9per mil to -26.6per mil. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with d13C = -4.5per mil and (2) an organic compound with d13C = -26.6per mil. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when "fresh" oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ? -4.7per mil, similar to the d13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 * 10**12 molC/yr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrothermal solutions were examined in a circulation system that started to develop after the 1991 volcanic eruption in the axial segment of the EPR between 9°45'N and 9°52'N. Within twelve years after this eruption, diffusion outflow of hot fluid from fractures in basaltic lavas gave way to focused seeps of hot solutions through channels of hydrothermal sulfide edifices. An example of the field Q demonstrates that from 1991 to 2003 H2S concentrations decreased from 86 to 1 mM/kg, and the Fe/H2S ratio simultaneously increased by factor 1.7. This fact can explain disappearance of microbial mats that were widespread within the fields before 1991. S isotopic composition of H2S does not depend on H2S concentration. This fact testifies rapid evolution of the hydrothermal system in the early years of its evolution. Carbon in CH4 from hot fluid sampled in 2003 is richer in 12C isotope than carbon in fluid from the hydrothermal field at 21°N EPR. It suggests that methane comes to the Q field from more than one source. Composition of particulate matter in hydrothermal solutions indicates that it was contributed by biological material. Experimental solutions with labeled substrates (t<70°C) show evidence of active processes of methane oxidation and sulfate reduction. Our results indicate that, during 12-year evolution of the hydrothermal system, composition of its solutions evolved and approached compositions of solutions in mature hydrothermal systems of the EPR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 87Sr/86Sr isotope curve of the middle Eocene to Oligocene was produced from analysis of foraminifera in Ocean Drilling Program Hole 689B, Maud Rise, near the coast of Antarctica. Sediments from the hole are well preserved with no evidence of diagenetic alteration. The sequence is nearly complete from 46.3 to 24.8 Ma, with an average sampling interval of 166 kyr. Excellent magnetostratigraphy in Hole 689B allows calibration to the geomagnetic polarity time scale of Cande and Kent (1992). Marine strontium isotopic ratios were nearly stable from 46.3 to 35.5 Ma, averaging near 0.70773, after which they began to increase. A slow increase began after 40.4 Ma, rising at a rate of only about 8*10**-6/m.y. from base values of 0.707707. From 35.5 Ma to 24.8 Ma the average slope increased to 40*10**-6/m.y. The slope remained constant at least until 24.8 Ma, when the record becomes discontinuous owing to unconformities. We evaluate several possible controls on the marine strontium isotope curve that could have led to the observed growth in 87Sr/86Sr ratios near the Eocene/Oligocene boundary. Three mechanisms are considered, including the onset of Antarctic glaciation, increased mountain building in the Himalayan-Tibetan region, and decreased hydrothermal activity. None of the mechanisms alone seems to adequately explain the increased 87Sr/86Sr ratios during the Oligocene. Glaciation as a weathering agent was too episodic and probably began too late to explain the upturn in marine 87Sr/86Sr ratios. There is evidence that uplift in the Himalayan-Tibetan region began in the Miocene, much too late to control Oligocene strontium isotope ratios. Lastly, hydrothermal flux changes since the Eocene were apparently not great enough alone to account for the rise in marine 87Sr/86Sr ratios. We suggest that a combination of causes, such as decreased hydrothermal activity perhaps followed by increased glaciation and mountain building, might best explain the growth of the marine 87Sr/86Sr curve during the Oligocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deployed autonomous temperature sensors at black smoker chimneys, cracks, and diffuse flow areas at the Lucky Strike hydrothermal field (Mid-Atlantic Ridge, ~37°17'N) between summer 2009 and summer 2012 and contemporaneously measured tidal pressures and currents as part of the long-term MoMAR experiment to monitor hydrothermal activity. We classify the temperature data according to the hydrogeologic setting of the measurement sites: a high-temperature regime (>190°C) representing discharge of essentially unmixed, primary hydrothermal fluids through chimneys, an intermediate-temperature regime (10-100°C) associated with mixing of primary fluids with cold pore fluids discharging through cracks, and a low-temperature regime (<10°C) associated with a thermal boundary layer forming over bacterial mats associated with diffuse outflow of warm fluids. Temperature records from all the regimes exhibit variations at semi-diurnal tidal periods, and cross-spectral analyses reveal that high-temperature discharge correlates to tidal pressure while low-temperature discharge correlates to tidal currents. Intermediate-temperature discharge exhibits a transitional behavior correlating to both tidal pressure and currents. Episodic perturbations, with transient temperature drops of up to ~150°C, which occur in the high-temperature and intermediate-temperature records, are not observed on multiple probes (including nearby probes at the same site), and they are not correlated with microearthquake activity, indicating that the perturbation mechanism is highly localized at the measurement sites within the hydrothermal structures. The average temperature at a given site may increase or decrease at annual time scales, but the average temperature of the hydrothermal field, as a whole, appears to be stable over our 3 year observation period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Snake Pit hydrothermal field is located on the top of a neovolcanic rise on the Mid-Atlantic Ridge at sea depths between 3460 and 3510 m. It was surveyed during several oceanological expeditions including DSDP Legs. Additional scientific materials were obtained in 2002 and 2003 during expedition onboard R/V Akademik Mstislav Keldysh with two Mir deep-sea manned submersibles. Three eastern hydrothermal mounds (Moose, Beehive, and Fir Tree) are located on the upper part of the eastern slope of the rise over a common fractured pedestal composed of fragments of massive sulfides. The western group of hydrothermal deposits is encountered on the western slope of the axial graben. Within this mature hydrothermal field, which was formed over the past 4000 years, we studied morphology of the hydrothermal mounds, chemistry and mineralogy of hydrothermal deposits, chemistry of sulfide minerals, and isotope composition of sulfur in them.