993 resultados para Hormone Receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ectopic ACTH Cushing's syndrome (EAS) is often caused by neuroendocrine tumors (NETs) of lungs, pancreas, thymus, and other less frequent locations. Localizing the source of ACTH can be challenging. A 64-year-old man presented with rapidly progressing fatigue, muscular weakness, and dyspnea. He was in poor condition and showed facial redness, proximal amyotrophy, and bruises. Laboratory disclosed hypokalemia, metabolic alkalosis, and markedly elevated ACTH and cortisol levels. Pituitary was normal on magnetic resonance imaging (MRI), and bilateral inferior petrosal sinus blood sampling with corticotropin-releasing hormone stimulation showed no significant central-to-periphery gradient of ACTH. Head and neck, thoracic and abdominal computerized tomography (CT), MRI, somatostatin receptor scintigraphy (SSRS), and (18)F-deoxyglucose-positron emission tomography (FDG-PET) failed to identify the primary tumor. (18)F-dihydroxyphenylalanine (F-DOPA)-PET/CT unveiled a 20-mm nodule in the jejunum and a metastatic lymph node. Segmental jejunum resection showed two adjacent NETs, measuring 2.0 and 0.5 cm with a peritoneal metastasis. The largest tumor expressed ACTH in 30% of cells. Following surgery, after a transient adrenal insufficiency, ACTH and cortisol levels returned to normal values and remain normal over a follow-up of 26 months. Small mid-gut NETs are difficult to localize on CT or MRI, and require metabolic imaging. Owing to low mitotic activity, NETs are generally poor candidates for FDG-PET, whereas SSRS shows poor sensitivity in EAS due to intrinsically low tumor concentration of type-2 somatostatin receptors (SST2) or to receptor down regulation by excess cortisol. However, F-DOPA-PET, which is related to amine precursor uptake by NETs, has been reported to have high positive predictive value for occult EAS despite low sensitivity, and constitutes a useful alternative to more conventional methods of tumor localization. LEARNING POINTS: Uncontrolled high cortisol levels in EAS can be lethal if untreated.Surgical excision is the keystone of NETs treatment, thus tumor localization is crucial.Most cases of EAS are caused by NETs, which are located mainly in the lungs. However, small gut NETs are elusive to conventional imaging and require metabolic imaging for detection.FDG-PET, based on tumor high metabolic rate, may not detect NETs that have low mitotic activity. SSRS may also fail, due to absent or low concentration of SST2, which may be down regulated by excess cortisol.F-DOPA-PET, based on amine-precursor uptake, can be a useful method to localize the occult source of ACTH in EAS when other methods have failed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Controversies still exist regarding the evaluation of growth hormone deficiency (GHD) in childhood at the end of growth. The aim of this study was to describe the natural history of GHD in a pediatric cohort. METHODS: This is a retrospective study of a cohort of pediatric patients with GHD. Cases of acquired GHD were excluded. Univariate logistic regression was used to identify predictors of GHD persisting into adulthood. RESULTS: Among 63 identified patients, 47 (75%) had partial GHD at diagnosis, while 16 (25%) had complete GHD, including 5 with multiple pituitary hormone deficiencies. At final height, 50 patients underwent repeat stimulation testing; 28 (56%) recovered and 22 (44%) remained growth hormone (GH) deficient. Predictors of persisting GHD were: complete GHD at diagnosis (OR 10.1, 95% CI 2.4-42.1), pituitary stalk defect or ectopic pituitary gland on magnetic resonance imaging (OR 6.5, 95% CI 1.1-37.1), greater height gain during GH treatment (OR 1.8, 95% CI 1.0-3.3), and IGF-1 level <-2 standard deviation scores (SDS) following treatment cessation (OR 19.3, 95% CI 3.6-103.1). In the multivariate analysis, only IGF-1 level <-2 SDS (OR 13.3, 95% CI 2.3-77.3) and complete GHD (OR 6.3, 95% CI 1.2-32.8) were associated with the outcome. CONCLUSION: At final height, 56% of adolescents with GHD had recovered. Complete GHD at diagnosis, low IGF-1 levels following retesting, and pituitary malformation were strong predictors of persistence of GHD. © 2015 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with an inherited deficiency in gonadotropin-releasing hormone (GnRH) have impaired sexual reproduction. Previous genetic linkage studies and sequencing of plausible gene candidates have identified mutations associated with inherited GnRH deficiency, but the small number of affected families and limited success in validating candidates have impeded genetic diagnoses for most patients. Using a combination of exome sequencing and computational modeling, we have identified a shared point mutation in semaphorin 3E (SEMA3E) in 2 brothers with Kallmann syndrome (KS), which causes inherited GnRH deficiency. Recombinant wild-type SEMA3E protected maturing GnRH neurons from cell death by triggering a plexin D1-dependent (PLXND1-dependent) activation of PI3K-mediated survival signaling. In contrast, recombinant SEMA3E carrying the KS-associated mutation did not protect GnRH neurons from death. In murine models, lack of either SEMA3E or PLXND1 increased apoptosis of GnRH neurons in the developing brain, reducing innervation of the adult median eminence by GnRH-positive neurites. GnRH neuron deficiency in male mice was accompanied by impaired testes growth, a characteristic feature of KS. Together, these results identify SEMA3E as an essential gene for GnRH neuron development, uncover a neurotrophic function for SEMA3E in the developing brain, and elucidate SEMA3E/PLXND1/PI3K signaling as a mechanism that prevents GnRH neuron deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibitory receptors (iRs) are frequently associated with "T cell exhaustion". However, the expression of iRs is also dependent on T cell differentiation and activation. Therapeutic blockade of various iRs, also referred to as "checkpoint blockade", is showing -unprecedented results in the treatment of cancer patients. Consequently, the clinical potential in this field is broad, calling for increased research efforts and rapid refinements in the understanding of iR function. In this review, we provide an overview on the significance of iR expression for the interpretation of T cell functionality. We summarize how iRs have been strongly associated with "T cell exhaustion" and illustrate the parallel evidence on the importance of T cell differentiation and activation for the expression of iRs. The differentiation subsets of CD8 T cells (naïve, effector, and memory cells) show broad and inherent differences in iR expression, while activation leads to strong upregulation of iRs. Therefore, changes in iR expression during an immune response are often concomitant with T cell differentiation and activation. Sustained expression of iRs in chronic infection and in the tumor microenvironment likely reflects a specialized T cell differentiation. In these situations of prolonged antigen exposure and chronic inflammation, T cells are "downtuned" in order to limit tissue damage. Furthermore, we review the novel "checkpoint blockade" treatments and the potential of iRs as biomarkers. Finally, we provide recommendations for the immune monitoring of patients to interpret iR expression data combined with parameters of activation and differentiation of T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are ligand activated transcription factors belonging to the nuclear hormone receptor superfamily. PPARγ is involved in many different activities in the epidermis, such as keratinocyte differentiation, permeability barrier recovery, dermal wound closure, sebaceous gland formation, sebocyte differentiation, and melanogenesis. Preclinical studies with PPARγ ligands on various skin diseases have been performed and they could represent a new strategy in the treatment of scarring alopecia. PPARγ deserves further studies as therapeutic target, likely not with the current drugs, but with future new classes of safer molecules and in combined therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery of hypocretins/orexins (Hcrt/Ox) in 1998, several narcoleptic mouse models, such as Hcrt-KO, Hcrtrl-KO, Hcrtr2-KO and double receptors KO mice, and orexin-ataxin transgenic mice were generated. The available Hcrt mouse models do not allow the dissection of the specific role of Hcrt in each target region. Dr. Anne Vassalli generated loxP-flanked alleles for each Hcrt receptor, which are manipulated by Cre recombinase to generate mouse lines with disrupted Hcrtrl or Hcrtr2 (or both) in cell type-specific manner. The role of noradrenaline (NA) and dopamine (OA) in ttie regulation of vigilance states is well documented. The purpose of this thesis is to explore the role of the Hcrt input into these two monoaminergic systems. Chronic loss of Hcrtrl in NA neurons consolidated paradoxical sleep (PS), and altered wakefulness brain activity in baseline, during the sleep deprivation (SD), and when mice were challenged by a novel environment, or exposed to nest-building material. The analysis of alterations in the sleep EEG delta power showed a consistent correlation with the changes in the preceding waking quality in these mice. Targeted inactivation of Hcrt input into DA neurons showed that Hcrtr2 inactivation present the strongest phenotype. The loss of Hcrtr2 in DA neurons caused modified brain activities in spontaneous wakefulness, during SD, and in novel environmental conditions. In addition to alteration of wakefulness quality and quantity, conditional inactivation of Hcrtr2 in DA neurons caused an increased in time spent in PS in baseline and a delayed and less complete PS recovery after SD. In the first 30 min of sleep recovery, single (i.e. for Hcrtrl or Hcrtr2) conditional knockout receptor mice had opposite changes in delta activity, including an increased power density in the fast delta range with specific inactivation of Hcrtr2, but a decreased power density in the same range with specific inactivation of Hcrtrl in DA cells. These studies demonstrate a complex impact of Hcrt receptors signaling in both NA and DA system, not only on quantity and quality of wakefulness, but also on PS amount regulation as well as on SWS delta power expression. -- Depuis la découverte des hypocrétines/orexines (Hcrt/Ox) en 1998, plusieurs modèles de souris, narcoleptiques telles que Hcrt-KO, Hcrtr2-KO et récepteurs doubles KO et les souris transgéniques orexine-ataxine ont été générés. Les modèles de souris Hcrt disponibles ne permettaient pas la dissection du rôle spécifique de l'Hcrt dans chaque noyau neuronal cible. Notre laboratoire a généré des allèles loxP pour chacun des 2 gènes codant pour les récepteurs Hcrtr, qui sont manipulés par recombinase Cre pour générer des lignées de souris avec Hcrtrl inactivé, ou Hcrtr2 inactivé, (ou les deux), spécifiquement dans un type cellulaire particulier. Le rôle de la noradrénaline (NA) et la dopamine (DA) dans la régulation des états de vigilance est bien documentée. Le but de cette thèse est d'étudier le rôle de l'afférence Hcrt dans ces deux systèmes monoaminergiques au niveau de l'activité cérébrale telle qu'elle apparaît dans l'électroencéphalogramme (EEG). Mon travail montre que la perte chronique de Hcrtrl dans les neurones NA consolide le sommeil paradoxal (PS), et l'activité cérébrale de l'éveil est modifiée en condition spontanée, au cours d'une experience de privation de sommeil (SD), et lorsque les souris sont présentées à un nouvel environnement, ou exposées à des matériaux de construction du nid. Ces modifications de l'éveil sont corrélées à des modifications de puissance de l'activité delta du sommeil lent qui le suit. L'inactivation ciblée des Hcrtrs dans les neurones DA a montré que l'inactivation Hcrtr2 conduit au phénotype le plus marqué. La perte de Hcrtr2 dans les neurones DA mène à des modification d'activité cérébrale en éveil spontané, pendant SD, ainsi que dans des conditions environnementales nouvelles. En plus de l'altération de la qualité de l'éveil et de la quantité, l'inactivation conditionnelle de Hcrtr2 dans les neurones DA a provoqué une augmentation du temps passé en sommeil paradoxal (PS) en condition de base, et une reprise retardée et moins complète du PS après SD. Dans les 30 premières minutes de la récupération de sommeil, les modèles inactivés pour un seul des récepteurs (ie pour Hcrtrl ou Hcrtr2 seulement) montrent des changements opposés en activité delta, en particulier une densité de puissance accrue dans le delta rapide avec l'inactivation spécifique de Hcrtr2, mais une densité de puissance diminuée dans cette même gamme chez les souris inactivées spécifiquement en Hcrtrl dans les neurones DA. Ces études démontrent un impact complexe de l'inactivation de la neurotransmission au niveau des récepteurs d'Hcrt dans les deux compartiments NA et DA, non seulement sur la quantité et la qualité de l'éveil, mais aussi sur la régulation de quantité de sommeil paradoxal, ainsi que sur l'expression de la puissance delta pendant le sommeil lent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities can have a suite of positive and negative effects on animals and thus can affect various life history parameters. Human presence and agricultural practice can be perceived as stressors to which animals react with the secretion of glucocorticoids. The acute short-term secretion of glucocorticoids is considered beneficial and helps an animal to redirect energy and behaviour to cope with a critical situation. However, a long-term increase of glucocorticoids can impair e.g. growth and immune functions. We investigated how nestling barn owls (Tyto alba) are affected by the surrounding landscape and by human activities around their nest sites. We studied these effects on two response levels: (a) the physiological level of the hypothalamus-pituitary-adrenal axis, represented by baseline concentrations of corticosterone and the concentration attained by a standardized stressor; (b) fitness parameters: growth of the nestlings and breeding performance. Nestlings growing up in intensively cultivated areas showed increased baseline corticosterone levels late in the season and had an increased corticosterone release after a stressful event, while their body mass was decreased. Nestlings experiencing frequent anthropogenic disturbance had elevated baseline corticosterone levels, an increased corticosterone stress response and a lower body mass. Finally, breeding performance was better in structurally more diverse landscapes. In conclusion, anthropogenic disturbance affects offspring quality rather than quantity, whereas agricultural practices affect both life history traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of a supramolecular organization of the G protein-coupled receptor (GPCR) is now being widely accepted by the scientific community. Indeed, GPCR oligomers may enhance the diversity and performance by which extracellular signals are transferred to the G proteins in the process of receptor transduction, although the mechanism that underlies this phenomenon still remains unsolved. Recently, it has been proposed that a trans-conformational switching model could be the mechanism allowing direct inhibition/activation of receptor activation/inhibition, respectively. Thus, heterotropic receptor-receptor allosteric regulations are behind the GPCR oligomeric function. In this paper we want to revise how GPCR oligomerization impinges on several important receptor functions like biosynthesis, plasma membrane diffusion or velocity, pharmacology and signaling. In particular, the rationale of receptor oligomerization might lie in the need of sensing complex whole cell extracellular signals and translating them into a simple computational model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the most effective compounds bound preferentially to a surface of unknown function [binding function 3 (BF-3)] instead of the coactivator-binding site [activation function 2 (AF-2)]. Different BF-3 mutations have been identified in PCa or androgen insensitivity syndrome patients, and they can strongly affect AR activity. Further, comparison of AR x-ray structures with and without bound ligands at BF-3 and AF-2 showed structural coupling between both pockets. Here, we combine experimental evidence and molecular dynamic simulations to investigate whether BF-3 mutations affect AR LBD function and dynamics possibly via allosteric conversation between surface sites. Our data indicate that AF-2 conformation is indeed closely coupled to BF-3 and provide mechanistic proof of their structural interconnection. BF-3 mutations may function as allosteric elicitors, probably shifting the AR LBD conformational ensemble toward conformations that alter AF-2 propensity to reorganize into subpockets that accommodate N-terminal domain and coactivator peptides. The induced conformation may result in either increased or decreased AR activity. Activating BF-3 mutations also favor the formation of another pocket (BF-4) in the vicinity of AF-2 and BF-3, which we also previously identified as a hot spot for a small compound. We discuss the possibility that BF-3 may be a protein-docking site that binds to the N-terminal domain and corepressors. AR surface sites are attractive pharmacological targets to develop allosteric modulators that might be alternative lead compounds for drug design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of nicotinic receptor ligands in the behavioral sensitization (hyperlocomotion) and rewarding properties (conditioned place preference paradigm, CPP) of 3,4-methylenedioxy-methamphetamine (MDMA) in mice. Each animal received intraperitoneal pretreatment with either saline, dihydro-β-erythroidine (DHβE, 1 mg/kg) or varenicline (VAR, 0.3 mg/kg), 15 min prior to subcutaneous saline or MDMA (5 mg/kg), for 10 consecutive days. On day 1, both DHβE and VAR inhibited the MDMA-induced hyperlocomotion. After 10 days of treatment, MDMA induced a hyperlocomotion that was not reduced (rather enhanced) in antagonist-pretreated animals. This early hyperlocomotion was accompanied by a significant increase in heteromeric nicotinic receptors in cortex that was not blocked by DHβE or VAR. Behavioral sensitization to MDMA was highest 2 weeks after the discontinuation of MDMA treatment. This additional increase in sensitivity was prevented in animals pretreated with DHβE or VAR. At this time, MDMA-treated mice showed a significant increase in heteromeric receptors in cortex that was prevented by DHβE and VAR. An involvement of α7 nicotinic receptors in this effect is ruled out. MDMA (10 mg/kg) induced positive CPP that was abolished by DHβE (2 mg/kg) and VAR (2 mg/kg). Moreover, chronic nicotine pretreatment (2 mg/kg, ip, b.i.d., for 14 days) caused MDMA, administered at a low dose (3 mg/kg), to induce CPP, which would otherwise not occur. Finally, present results point out that heteromeric nicotinic receptors are involved in locomotor sensitization and addictive potential induced by MDMA. Thus, varenicline might be a useful drug to treat both tobacco and MDMA abuse at once.