981 resultados para HIPPARCOS PROPER MOTIONS
Resumo:
In this manuscript, rotational spectra of four new isotopologues of the S-H center dot center dot center dot pi bonded C2H4 center dot center dot center dot H2S complex, i.e., C2D4 center dot center dot center dot H2S, C2D4 center dot center dot center dot D2S, C2D4 center dot center dot center dot HDS, and (CCH4)-C-13 center dot center dot center dot H2S have been reported and analyzed. All isotopologues except C2D4 center dot center dot center dot HDS show a four line pattern whereas a doubling of the transition frequencies was observed for C2D4 center dot center dot center dot HDS. These results together with our previous report on the title complex M. Goswami, P. K. Mandal, D. J. Ramdass, and E. Arunan, Chem. Phys. Lett. 393(1-3), 22-27 (2004)] confirm that both subunits (C2H4 and H2S) are involved in large amplitude motions leading to a splitting of each rotational transition to a quartet. Further, the results also confirm that the motions which are responsible for the observed splittings involve both monomers. Molecular symmetry group analysis, considering the interchange of equivalent H atoms in H2S and C2H4 could explain the observed four line pattern and their intensities in the microwave spectrum. In addition, hydride stretching fundamentals of the complex were measured using coherence-converted population transfer Fourier Transform Microwave-infrared (IR-MW double resonance) experiments in the S-H and C-H stretch regions. Changes in the tunneling splittings upon vibrational excitation are consistent with the isotopic dependence of pure rotational transitions. A complexation shift of 2.7-6.5 cm(-1) has been observed in the two fundamental S-H stretching modes of the H2S monomer in the complex. Vibrational pre-dissociation in the bound S-H stretch has been detected whereas the instrument-limited line-shapes in other S-H and C-H stretches indicate slower pre-dissociation rate. Some local perturbations in the vibrational spectra have been observed. Two combination bands have been observed corresponding to both the S-H stretching fundamentals and what appears to be the intermolecular stretching mode at 55 cm(-1). The tunneling splitting involved in the rotation of C2H4 unit has been deduced to be 1.5 GHz from the IR-MW results. In addition, ab initio barrier heights derived for different motions of the monomers support the experimental results and provide further insight into the motions causing the splitting. (C) 2013 AIP Publishing LLC.
Resumo:
A wave propagation based approach for the detection of damage in components of structures having periodic damage has been proposed. Periodic damage pattern may arise in a structure due to periodicity in geometry and in loading. The method exploits the Block-Floquet band formation mechanism, a feature specific to structures with periodicity, to identify propagation bands (pass bands) and attenuation bands (stop bands) at different frequency ranges. The presence of damage modifies the wave propagation behaviour forming these bands. With proper positioning of sensors a damage force indicator (DFI) method can be used to locate the defect at an accuracy level of sensor to sensor distance. A wide range of transducer frequency may be used to obtain further information about the shape and size of the damage. The methodology is demonstrated using a few 1-D structures with different kinds of periodicity and damage. For this purpose, dynamic stiffness matrix is formed for the periodic elements to obtain the dispersion relationship using frequency domain spectral element and spectral super element method. The sensitivity of the damage force indicator for different types of periodic damages is also analysed.
Resumo:
We experimentally study the effect of having hinged leaflets at the jet exit on the formation of a two-dimensional counter-rotating vortex pair. A piston-cylinder mechanism is used to generate a starting jet from a high-aspect-ratio channel into a quiescent medium. For a rigid exit, with no leaflets at the channel exit, the measurements at a central plane show that the trailing jet in the present case is never detached from the vortex pair, and keeps feeding into the latter, unlike in the axisymmetric case. Passive flexibility is introduced in the form of rigid leaflets or flaps that are hinged at the exit of the channel, with the flaps initially parallel to the channel walls. The experimental arrangement closely approximates the limiting case of a free-to-rotate rigid flap with negligible structural stiffness, damping and flap inertia, as these limiting structural properties permit the largest flap openings. Using this arrangement, we start the flow and measure the flap kinematics and the vorticity fields for different flap lengths and piston velocity programs. The typical motion of the flaps involves a rapid opening and a subsequent more gradual return to its initial position, both of which occur when the piston is still moving. The initial opening of the flaps can be attributed to an excess pressure that develops in the channel when the flow starts, due to the acceleration that has to be imparted to the fluid slug between the flaps. In the case with flaps, two additional pairs of vortices are formed because of the motion of the flaps, leading to the ejection of a total of up to three vortex pairs from the hinged exit. The flaps' length (L-f) is found to significantly affect flap motions when plotted using the conventional time scale L/d, where L is the piston stroke and d is the channel width. However, with a newly defined time scale based on the flap length (L/L-f), we find a good collapse of all the measured flap motions irrespective of flap length and piston velocity for an impulsively started piston motion. The maximum opening angle in all these impulsive velocity program cases, irrespective of the flap length, is found to be close to 15 degrees. Even though the flap kinematics collapses well with L/L-f, there are differences in the distribution of the ejected vorticity even for the same L/L-f. Such a redistribution of vorticity can lead to important changes in the overall properties of the flow, and it gives us a better understanding of the importance of exit flexibility in such flows.
Resumo:
Rigid splitter plates in the wake of bluff bodies are known to suppress the primary vortex shedding. In the present work, we experimentally study the problem of a flexible splitter plate in the wake of a circular cylinder. In this case, the splitter plate is free to continuously deform along its length due to the fluid forces acting on it; the flexural rigidity (EI) of the plate being an important parameter. Direct visualizations of the splitter plate motions, for very low values of flexural rigidity (EI), indicate periodic traveling wave type deformations of the splitter plate with maximum tip amplitudes of the order of I cylinder diameter. As the Reynolds number based on cylinder diameter is varied, two regimes of periodic splitter plate motions are found that are referred to as mode I and mode II, with a regime of aperiodic motions between them. The frequency of plate motions in both periodic modes is found to be close to the plane cylinder Strouhal number of about 0.2, while the average frequencies in the non-periodic regime are substantially lower. The measured normalized phase speed of the traveling wave for both periodic modes is also close to the convection speed of vortices in the plane cylinder wake. As the flexural rigidity of the plate (EI) is increased, the response of the plate was found to shift to the right when plotted with flow speed or Re. To better capture the effect of varying EI, we define and use a non-dimensional bending stiffness, K*, similar to the ones used in the flag flutter problem, K*=EI/(0.5 rho(UL3)-L-2), where U is the free-stream velocity and L is the splitter plate length. Amplitude data for different EI cases when plotted against this parameter appear to collapse on to a single curve for a given splitter plate length. Measurements of the splitter plate motions for varying splitter plate lengths indicate that plates that are substantially larger than the formation length of the plane cylinder wake have similar responses, while shorter plates show significant differences.
Resumo:
In the present work, we experimentally study and demarcate the stall flutter boundaries of a NACA 0012 airfoil at low Reynolds numbers (Re similar to 10(4)) by measuring the forces and flow fields around the airfoil when it is forced to oscillate. The airfoil is placed at large mean angle of attack (alpha(m)), and is forced to undergo small amplitude pitch oscillations, the amplitude (Delta alpha) and frequency (f) of which are systematically varied. The unsteady loads on the oscillating airfoil are directly measured, and are used to calculate the energy transfer to the airfoil from the flow. These measurements indicate that for large mean angles of attack of the airfoil (alpha(m)), there is positive energy transfer to the airfoil over a range of reduced frequencies (k=pi fc/U), indicating that there is a possibility of airfoil excitation or stall flutter even at these low Re (c=chord length). Outside this range of reduced frequencies, the energy transfer is negative and under these conditions the oscillations would be damped. Particle Image Velocimetry (PIV) measurements of the flow around the oscillating airfoil show that the shear layer separates from the leading edge and forms a leading edge vortex, although it is not very clear and distinct due to the low oscillation amplitudes. On the other hand, the shear layer formed after separation is found to clearly move periodically away from the airfoil suction surface and towards it with a phase lag to the airfoil oscillations. The phase of the shear layer motion with respect to the airfoil motions shows a clear difference between the exciting and the damping case.
Resumo:
A layer-wise theory with the analysis of face ply independent of lamination is used in the bending of symmetric laminates with anisotropic plies. More realistic and practical edge conditions as in Kirchhoff's theory are considered. An iterative procedure based on point-wise equilibrium equations is adapted. The necessity of a solution of an auxiliary problem in the interior plies is explained and used in the generation of proper sequence of two dimensional problems. Displacements are expanded in terms of polynomials in thickness coordinate such that continuity of transverse stresses across interfaces is assured. Solution of a fourth order system of a supplementary problem in the face ply is necessary to ensure the continuity of in-plane displacements across interfaces and to rectify inadequacies of these polynomial expansions in the interior distribution of approximate solutions. Vertical deflection does not play any role in obtaining all six stress components and two in-plane displacements. In overcoming lacuna in Kirchhoff's theory, widely used first order shear deformation theory and other sixth and higher order theories based on energy principles at laminate level in smeared laminate theories and at ply level in layer-wise theories are not useful in the generation of a proper sequence of 2-D problems converging to 3-D problems. Relevance of present analysis is demonstrated through solutions in a simple text book problem of simply supported square plate under doubly sinusoidal load.