998 resultados para HEART-BEATING DONORS
Resumo:
Effective pump function of the heart depends on the precise control of spatial and temporal patterns of electrical activation. Accordingly, the distribution and function of gap junction channels are important determinants of the conduction properties of myocardium and undoubtedly play other roles in intercellular communication crucial to normal cardiac function. Recent advances have begun to elucidate mechanisms by which the heart regulates intercellular electrical coupling at gap junctions in response to stress or injury. Although responses to increased load or injury are generally adaptive in nature, remodeling of intercellular junctions under conditions of severe stress creates anatomic substrates conducive to the development of lethal ventricular arrhythmias. Potential mechanisms controlling the level of intercellular communication in the heart include regulation of connexin turnover dynamics and phosphorylation.
Resumo:
Systemic iron overload (IO) is considered a principal determinant in the clinical outcome of different forms of IO and in allogeneic hematopoietic stem cell transplantation (alloSCT). However, indirect markers for iron do not provide exact quantification of iron burden, and the evidence of iron-induced adverse effects in hematological diseases has not been established. Hepatic iron concentration (HIC) has been found to represent systemic IO, which can be quantified safely with magnetic resonance imaging (MRI), based on enhanced transverse relaxation. The iron measurement methods by MRI are evolving. The aims of this study were to implement and optimise the methodology of non-invasive iron measurement with MRI to assess the degree and the role of IO in the patients. An MRI-based HIC method (M-HIC) and a transverse relaxation rate (R2*) from M-HIC images were validated. Thereafter, a transverse relaxation rate (R2) from spin-echo imaging was calibrated for IO assessment. Two analysis methods, visual grading and rSI, for a rapid IO grading from in-phase and out-of-phase images were introduced. Additionally, clinical iron indicators were evaluated. The degree of hepatic and cardiac iron in our study patients and IO as a prognostic factor in patients undergoing alloSCT were explored. In vivo and in vitro validations indicated that M-HIC and R2* are both accurate in the quantification of liver iron. R2 was a reliable method for HIC quantification and covered a wider HIC range than M-HIC and R2*. The grading of IO was able to be performed rapidly with the visual grading and rSI methods. Transfusion load was more accurate than plasma ferritin in predicting transfusional IO. In patients with hematological disorders, the prevalence of hepatic IO was frequent, opposite to cardiac IO. Patients with myelodysplastic syndrome were found to be the most susceptible to IO. Pre-transplant IO predicted severe infections during the early post-transplant period, in contrast to the reduced risk of graft-versus-host disease. Iron-induced, poor transplantation results are most likely to be mediated by severe infections.
Resumo:
Mechanisms underlying risk associated with hypertensive heart disease (HHD) and left ventricular hypertrophy (LVH) are discussed in this report and provide a rationale for understanding this very common and important cause of death from hypertension and its complications. Emphasized are impaired coronary hemodynamics, endothelial dysfunction, and ventricular fibrosis from increased collagen deposition intramurally and perivascularly. Each is exacerbated by aging and, perhaps, also by increased dietary salt intake. These functional and structural changes promote further endothelial dysfunction, altered coronary hemodynamics, and diastolic as well as systolic ventricular contractile function in HHD. The clinical endpoints of HHD include angina pectoris (with or without atherosclerosis of the epicardial coronary arteries), myocardial infarction, cardiac failure, lethal dysrhythmias, and sudden death. The major concept to be derived from these alterations is that not all that is clinically recognized as LVH is true myocytic hypertrophy and structural remodeling. Other major co-morbid changes occur that serve to increase cardiovascular risk including impaired coronary hemodynamics, endothelial dysfunction, and ventricular fibrosis.
Resumo:
It has been shown that angiotensin-(1-7) (Ang-(1-7)) infusion potentiates the bradykinin (BK)-induced hypotensive response in conscious rats. The present study was conducted to identify Ang-(1-7)-BK interactions in the isolated rat heart perfused according to the Langendorff technique. Hearts were excised and perfused through the aortic stump under a constant flow with Krebs-Ringer solution and the changes in perfusion pressure and heart contractile force were recorded. Bolus injections of BK (2.5, 5, 10 and 20 ng) produced a dose-dependent hypotensive effect. Ang-(1-7) added to the perfusion solution (2 ng/ml) did not change the perfusion pressure or the contractile force but doubled the hypotensive effect of the lower doses of BK. The BK-potentiating Ang-(1-7) activity was blocked by pretreatment with indomethacin (5 mg/kg, ip) or L-NAME (30 mg/kg, ip). The Ang-(1-7) antagonist A-779 (50 ng/ml in Krebs-Ringer) completely blocked the effect of Ang-(1-7) on BK-induced vasodilation. These data suggest that the potentiation of the BK-induced vasodilation by Ang-(1-7) can be attributed to the release of nitric oxide and vasodilator prostaglandins through an Ang-(1-7) receptor-mediated mechanism.
Resumo:
In order to assess the relative influence of age, resting heart rate (HR) and sedentary life style, heart rate variability (HRV) was studied in two different groups. The young group (YG) consisted of 9 sedentary subjects aged 15 to 20 years (YG-S) and of 9 nonsedentary volunteers (YG-NS) also aged 15 to 20. The elderly sedentary group (ESG) consisted of 16 sedentary subjects aged 39 to 82 years. HRV was assessed using a short-term procedure (5 min). R-R variability was calculated in the time-domain by means of the root mean square successive differences. Frequency-domain HRV was evaluated by power spectrum analysis considering high frequency and low frequency bands. In the YG the effort tolerance was ranked in a bicycle stress test. HR was similar for both groups while ESG showed a reduced HRV compared with YG. Within each group, HRV displayed a negative correlation with HR. Although YG-NS had better effort tolerance than YG-S, their HR and HRV were not significantly different. We conclude that HRV is reduced with increasing HR or age, regardless of life style. The results obtained in our short-term study agree with others of longer duration by showing that age and HR are the main determinants of HRV. Our results do not support the idea that changes in HRV are related to regular physical activity.
Resumo:
The aim of the present study was to compare the modulation of heart rate in a group of postmenopausal women to that of a group of young women under resting conditions on the basis of R-R interval variability. Ten healthy postmenopausal women (mean ± SD, 58.3 ± 6.8 years) and 10 healthy young women (mean ± SD, 21.6 ± 0.82 years) were submitted to a control resting electrocardiogram (ECG) in the supine and sitting positions over a period of 6 min. The ECG was obtained from a one-channel heart monitor at the CM5 lead and processed and stored using an analog to digital converter connected to a microcomputer. R-R intervals were calculated on a beat-to-beat basis from the ECG recording in real time using a signal-processing software. Heart rate variability (HRV) was expressed as standard deviation (RMSM) and mean square root (RMSSD). In the supine position, the postmenopausal group showed significantly lower (P<0.05) median values of RMSM (34.9) and RMSSD (22.32) than the young group (RMSM: 62.11 and RMSSD: 49.1). The same occurred in the sitting position (RMSM: 33.0 and RMSSD: 18.9 compared to RMSM: 57.6 and RMSSD: 42.8 for the young group). These results indicate a decrease in parasympathetic modulation in postmenopausal women compared to young women which was possibly due both to the influence of age and hormonal factors. Thus, time domain HRV proved to be a noninvasive and sensitive method for the identification of changes in autonomic modulation of the sinus node in postmenopausal women.
Resumo:
The present study was designed to evaluate the differences in the coronary vasodilator actions of serotonin (5-HT) in isolated heart obtained from naive or castrated male and female rats that were treated with either estrogen or testosterone. Hearts from 12 groups of rats were used: male and female naive animals, castrated, castrated and treated with 17ß-estradiol (0.5 µg kg-1 day-1) for 7 or 30 days, and castrated and treated with testosterone (0.5 mg kg-1 day-1) for 7 or 30 days. After treatment, the vascular reactivity of the coronary bed was evaluated. Baseline coronary perfusion pressure (CPP) was determined and dose-response curves to 5-HT were generated. Baseline CPP differed between male (70 ± 6 mmHg, N = 10) and female (115 ± 6 mmHg, N = 12) naive rats. Maximal 5-HT-induced coronary vasodilation was higher (P<0.05) in naive female than in naive male rats. In both sexes, 5-HT produced endothelium-dependent coronary vasodilation. After castration, there was no significant difference in baseline CPP between hearts obtained from male and female rats (75 ± 7 mmHg, N = 8, and 83 ± 5 mmHg, N = 8, respectively). Castration reduced the 5-HT-induced maximal vasodilation in female and male rats (P<0.05). Estrogen treatment of castrated female rats restored (P<0.05) the vascular reactivity. In castrated male rats, 30 days of estrogen treatment increased (P<0.05) the responsiveness to 5-HT. The endothelium-dependent coronary vasodilator actions of 5-HT are greater in female rats and are modulated by estrogen. A knowledge of the mechanism of action of estrogen on coronary arteries could aid in the development of new therapeutic strategies and potentially decrease the incidence of cardiovascular disease in both sexes.
Resumo:
The time course of heart rate and body weight alterations during the natural period of dormancy were determined in active feeding and dormant juvenile specimens of Megalobulimus sanctipauli. In both groups, heart rate markedly decreased during the first 40 days of dormancy, tending to stabilize thereafter. This time period coincided with the decrease in environmental temperature during autumn-winter. At the end of the dormancy period, surviving active feeding and dormant snails showed a significant decrease in heart rate which, however, was significantly greater in the latter group. Total body weight decreased concomitantly with heart rate in dormant snails but remained constant in active feeding snails. Body hydration induced significant increases in weight and heart rate in surviving dormant snails. Feeding following hydration promoted a new significant increase in heart rate but not in weight. These results indicate that the decrease in heart rate observed in juvenile specimens of M. sanctipauli during dormancy may be due to at least three factors: 1) decrease in environmental temperature during autumn-winter, 2) starvation which leads to the depletion of endogenous fuel reserves and to a probable decrease in hemolymph nutrient levels, and 3) dehydration which leads to a probable decrease in hemolymph volume and venous return and/or to an increase in hemolymph osmolarity.
Resumo:
The purpose of the present study was to evaluate the effects of aerobic physical training (APT) on heart rate variability (HRV) and cardiorespiratory responses at peak condition and ventilatory anaerobic threshold. Ten young (Y: median = 21 years) and seven middle-aged (MA = 53 years) healthy sedentary men were studied. Dynamic exercise tests were performed on a cycloergometer using a continuous ramp protocol (12 to 20 W/min) until exhaustion. A dynamic 24-h electrocardiogram was analyzed by time (TD) (standard deviation of mean R-R intervals) and frequency domain (FD) methods. The power spectral components were expressed as absolute (a) and normalized units (nu) at low (LF) and high (HF) frequencies and as the LF/HF ratio. Control (C) condition: HRV in TD (Y: 108, MA: 96 ms; P<0.05) and FD - LFa, HFa - was significantly higher in young (1030; 2589 ms²/Hz) than in middle-aged men (357; 342 ms²/Hz) only during sleep (P<0.05); post-training effects: resting bradycardia (P<0.05) in the awake condition in both groups; VO2 increased for both groups at anaerobic threshold (P<0.05), and at peak condition only in young men; HRV in TD and FD (a and nu) was not significantly changed by training in either groups. The vagal predominance during sleep is reduced with aging. The resting bradycardia induced by short-term APT in both age groups suggests that this adaptation is much more related to intrinsic alterations in sinus node than in efferent vagal-sympathetic modulation. Furthermore, the greater alterations in VO2 than in HRV may be related to short-term APT.
Resumo:
Impaired baroreflex sensitivity in diabetes is well described and has been attributed to autonomic diabetic neuropathy. In the present study conducted on acute (10-20 days) streptozotocin (STZ)-induced diabetic rats we examined: 1) cardiac baroreflex sensitivity, assessed by the slope of the linear regression between phenylephrine- or sodium nitroprusside-induced changes in arterial pressure and reflex changes in heart rate (HR) in conscious rats; 2) aortic baroreceptor function by means of the relationship between systolic arterial pressure and aortic depressor nerve (ADN) activity, in anesthetized rats, and 3) bradycardia produced by electrical stimulation of the vagus nerve or by the iv injection of methacholine in anesthetized animals. Reflex bradycardia (-1.4 ± 0.1 vs -1.7 ± 0.1 bpm/mmHg) and tachycardia (-2.1 ± 0.3 vs -3.0 ± 0.2 bpm/mmHg) were reduced in the diabetic group. The gain of the ADN activity relationship was similar in control (1.7 ± 0.1% max/mmHg) and diabetic (1.5 ± 0.1% max/mmHg) animals. The HR response to vagal nerve stimulation with 16, 32 and 64 Hz was 13, 16 and 14% higher, respectively, than the response of STZ-treated rats. The HR response to increasing doses of methacholine was also higher in the diabetic group compared to control animals. Our results confirm the baroreflex dysfunction detected in previous studies on short-term diabetic rats. Moreover, the normal baroreceptor function and the altered HR responses to vagal stimulation or methacholine injection suggest that the efferent limb of the baroreflex is mainly responsible for baroreflex dysfunction in this model of diabetes.
Resumo:
Physical exercise is associated with parasympathetic withdrawal and increased sympathetic activity resulting in heart rate increase. The rate of post-exercise cardiodeceleration is used as an index of cardiac vagal reactivation. Analysis of heart rate variability (HRV) and complexity can provide useful information about autonomic control of the cardiovascular system. The aim of the present study was to ascertain the association between heart rate decrease after exercise and HRV parameters. Heart rate was monitored in 17 healthy male subjects (mean age: 20 years) during the pre-exercise phase (25 min supine, 5 min standing), during exercise (8 min of the step test with an ascending frequency corresponding to 70% of individual maximal power output) and during the recovery phase (30 min supine). HRV analysis in the time and frequency domains and evaluation of a newly developed complexity measure - sample entropy - were performed on selected segments of heart rate time series. During recovery, heart rate decreased gradually but did not attain pre-exercise values within 30 min after exercise. On the other hand, HRV gradually increased, but did not regain rest values during the study period. Heart rate complexity was slightly reduced after exercise and attained rest values after 30-min recovery. The rate of cardiodeceleration did not correlate with pre-exercise HRV parameters, but positively correlated with HRV measures and sample entropy obtained from the early phases of recovery. In conclusion, the cardiodeceleration rate is independent of HRV measures during the rest period but it is related to early post-exercise recovery HRV measures, confirming a parasympathetic contribution to this phase.
Resumo:
It has been suggested that nigrostriatal dopaminergic transmission is modulated by nitric oxide (NO). Since there is evidence that gonadal hormones can affect extrapyramidal motor behavior in mammals, we investigated the effects of isosorbide dinitrate (ISD), linsidomine (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP), three pharmacologically different NO donors, on neuroleptic-induced catalepsy in 60- to 80-day-old male and female albino mice. Catalepsy was induced with haloperidol (1 mg/kg, ip) and measured at 30-min intervals by means of a bar test. Drugs (or appropriate vehicle) were injected ip 30 min before haloperidol, with each animal being used only once. ISD (5, 20 and 50 mg/kg) caused a dose-dependent inhibition of catalepsy in male mice (maximal effect 120 min after haloperidol: 64% inhibition). In the females only at the highest dose of ISD was an attenuation of catalepsy observed, which was mild and short lasting. SIN-1 (10 and 50 mg/kg) did not significantly affect catalepsy in female mice, while a significant attenuation was observed in males at the dose of 50 mg/kg (maximal inhibition: 60%). SNAP (20 mg/kg) significantly attenuated catalepsy in males 120 min after haloperidol (44% inhibition), but had no significant effect on females. These results basically agree with literature data showing that NO facilitates central dopaminergic transmission, although the mechanisms are not fully understood. They also reveal the existence of gender-related differences in this nitrergic modulation in mice, with females being less affected than males.
Resumo:
The feasibility of allogeneic bone marrow transplantation (alloBMT) in a developing country has not yet been demonstrated. Many adverse factors including social and economic limitations may reduce the overall results of this complex and expensive procedure. Our objective was to characterize the most important clinical, social and economic features of candidates for transplantation and their potential donors as well as the influence of these factors on overall survival in a retrospective and exploratory analysis at a university hospital. From July 1993 to July 2001, candidates for BMT were referred to the Bone Marrow Transplantation Unit by Hematology and Oncology Centers from several regions of Brazil. A total of 1138 patients were referred to us as candidates for alloBMT. Median age was 25 years (range: 2 months-60 years), 684 (60.1%) were males and 454 (39.9%) were females. The clinical indications were severe aplastic anemia and hematological malignancies. From the total of 1138 patients, 923 had HLA-typing; 497/923 (53.8%) candidates had full match donors; 352/1138 (30.8%) were eligible for alloBMT. Only 235 of 352 (66.7%) were transplanted. Schooling was 1st to 8th grade for 123/235 (52.3%); monthly family income ranged from US$60 (7%) to more than US$400 (36%). Overall survival for patients with chronic myeloid leukemia, severe aplastic anemia and acute myeloid leukemia was 58, 60 and 30%, respectively. Thus, overall survival rates for the most frequent hematological diseases were similar to those reported in the International Registry, except for acute myeloid leukemia. This descriptive and exploratory analysis suggests the feasibility of alloBMT in a developing country like Brazil.
Resumo:
The effects of various hypertonic solutions on the intraventricular conduction, ventricular repolarization and the arrhythmias caused by the intravenous (iv) injection of bupivacaine (6.5 mg/kg) were studied in sodium pentobarbital-anesthetized mongrel dogs. Hypertonic solutions, given iv 5 min before bupivacaine, were 7.5% (w/v) NaCl, 5.4% (w/v) LiCl, 50% (w/v) glucose (2,400 mOsm/l, 5 ml/kg), or 20% (w/v) mannitol (1,200 mOsm/l, 10 ml/kg). Bupivacaine induced severe arrhythmias and ventricular conduction and repolarization disturbances, as reflected by significant increases in QRS complex duration, HV interval, IV interval and monophasic action potential duration, as well as severe hemodynamic impairment. Significant prevention against ventricular electrophysiologic and hemodynamic disturbances and ventricular arrhythmias was observed with 7.5% NaCl (percent increase in QRS complex duration: 164.4 ± 21.8% in the non-pretreated group vs 74.7 ± 14.1% in the pretreated group, P<0.05; percent increase in HV interval: 131.4 ± 16.1% in the non-pretreated group vs 58.2 ± 7.5% in the pretreated group, P<0.05; percent increase in monophasic action potential duration: 22.7 ± 6.8% in the non-pretreated group vs 9.8 ± 6.3% in the pretreated group, P<0.05; percent decrease in cardiac index: -46 ± 6% in the non-pretreated group vs -28 ± 5% in the pretreated group, P<0.05). The other three hypertonic solutions were ineffective. These findings suggest an involvement of sodium ions in the mechanism of hypertonic protection.
Resumo:
Infarct-induced heart failure is usually associated with cardiac hypertrophy and decreased ß-adrenergic responsiveness. However, conflicting results have been reported concerning the density of L-type calcium current (I Ca(L)), and the mechanisms underlying the decreased ß-adrenergic inotropic response. We determined I Ca(L) density, cytoplasmic calcium ([Ca2+]i) transients, and the effects of ß-adrenergic stimulation (isoproterenol) in a model of postinfarction heart failure in rats. Left ventricular myocytes were obtained by enzymatic digestion 8-10 weeks after infarction. Electrophysiological recordings were obtained using the patch-clamp technique. [Ca2+]i transients were investigated via fura-2 fluorescence. ß-Adrenergic receptor density was determined by [³H]-dihydroalprenolol binding to left ventricle homogenates. Postinfarction myocytes showed a significant 25% reduction in mean I Ca(L) density (5.7 ± 0.28 vs 7.6 ± 0.32 pA/pF) and a 19% reduction in mean peak [Ca2+]i transients (0.13 ± 0.007 vs 0.16 ± 0.009) compared to sham myocytes. The isoproterenol-stimulated increase in I Ca(L) was significantly smaller in postinfarction myocytes (Emax: 63.6 ± 4.3 vs 123.3 ± 0.9% in sham myocytes), but EC50 was not altered. The isoproterenol-stimulated peak amplitude of [Ca2+]i transients was also blunted in postinfarction myocytes. Adenylate cyclase activation through forskolin produced similar I Ca(L) increases in both groups. ß-Adrenergic receptor density was significantly reduced in homogenates from infarcted hearts (Bmax: 93.89 ± 20.22 vs 271.5 ± 31.43 fmol/mg protein in sham myocytes), while Kd values were similar. We conclude that postinfarction myocytes from large infarcts display reduced I Ca(L) density and peak [Ca2+]i transients. The response to ß-adrenergic stimulation was also reduced and was probably related to ß-adrenergic receptor down-regulation and not to changes in adenylate cyclase activity.