985 resultados para HARD-PHOTON EMISSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superradiant emission pulses from a quantum-dot tapered device are generated on demand at repetition rates of up to 5 MHz. The pulses have durations as short as 320 fs at a wavelength of 1270 nm. © 2010 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enhanced emission performance of a graphene/Mo hybrid gate electrode integrated into a nanocarbon field emission micro-triode electron source is presented. Highly electron transparent gate electrodes are fabricated from chemical vapor deposited bilayer graphene transferred to Mo grids with experimental and simulated data, showing that liberated electrons efficiently traverse multi-layer graphene membranes with transparencies in excess of 50-68%. The graphene hybrid gates are shown to reduce the gate driving voltage by 1.1 kV, whilst increasing the electron transmission efficiency of the gate electrode significantly. Integrated intensity maps show that the electron beam angular dispersion is dramatically improved (87.9°) coupled with a 63% reduction in beam diameter. Impressive temporal stability is noted (<1.0%) with surprising negligible long-term damage to the graphene. A 34% increase in triode perveance and an amplification factor 7.6 times that of conventional refractory metal grid gate electrode-based triodes are noted, thus demonstrating the excellent stability and suitability of graphene gates in micro-triode electron sources. A nanocarbon field emission triode with a hybrid gate electrode is developed. The graphene/Mo gate shows a high electron transparency (50-68%) which results in a reduced turn-on potential, increased beam collimation, reduced beam diameter (63%), enhanced stability (<1% variation), a 34% increase in perveance, and an amplification 7.6 times that of equivalent conventional refractory metal gate triodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to accurately design carbon nanofibre (CN) field emitters with predictable electron emission characteristics will enable their use as electron sources in various applications such as microwave amplifiers, electron microscopy, parallel beam electron lithography and advanced Xray sources. Here, highly uniform CN arrays of controlled diameter, pitch and length were fabricated using plasma enhanced chemical vapour deposition and their individual emission characteristics and field enhancement factors were probed using scanning anode field emission mapping. For a pitch of 10 µm and a CN length of 5 µm, the directly measured enhancement factors of individual CNs was 242, which was in excellent agreement with conventional geometry estimates (240). We show here direct empirical evidence that in regular arrays of vertically aligned CNs the overall enhancement factor is reduced when the pitch between emitters is less than half the emitter height, in accordance to our electrostatic simulations. Individual emitters showed narrow Gaussian-like field enhancement distributions, in excellent agreement with electric field simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of the algal Nitzschia hantzschiana solution with (or without) Fe(III) was carried out using fluorescence emission and synchronous-scan spectroscopy. An emission peak (excited at 440 nm) was observed at 675 nm for Nitzschia hantzschiana solution. The effective characterization method used was synchronous-scan fluorescence spectroscopy (SFS). A wavelength difference (Delta lambda) of 90 nm was maintained between excitation and emission wavelengths. The peak was observed at about 236(ex) nm (326(em) nm) for synchronous fluorescence spectroscopy. Fe(III) was an effective quencher. The relationship between I-0/I (quenching efficiency) and c (concentration of Fe (III) added) was a linear correlation for the algal solution with Fe(III). Effects of pH on synchronous-scan fluorescence intensity were evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E2SiO5 thin films were fabricated on Si substrate by reactive magnetron sputtering method with subsequent annealing treatment. The morphology properties of as-deposited films have been studied by scanning electron microscope. The fraction of erbium is estimated to be 23.5 at% based on Rutherford backscattering measurement in as-deposited Er-Si-O film. X-ray diffraction measurement revealed that Er2SiO5 crystalline structure was formed as sample treated at 1100 degrees C for 1 h in O-2 atmosphere. Through proper thermal treatment, the 1.53 mu m Er3+-related emission intensity can be enhanced by a factor of 50 with respect to the sample annealed at 800 degrees C. Analysis of pump-power dependence of Er3+ PL intensity indicated that the upconversion phenomenon could be neglected even under a high photon flux of 10(21) (photons/cm(2)/sec). Temperature-dependent photoluminescence (PL) of Er2SiO5 was studied and showed a weak thermal quenching factor of 2. Highly efficienct photoluminescence of Er2SiO5 films has been demonstrated with Er3+ concentration of 10(22)/cm(3), and it opens a promising way towards future Si-based light source for Si photonics. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Directional emission InP/AlGaInAs square-resonator microlasers with a side length of 20 mu m are fabricated by standard photolithography and inductively coupled-plasma etching technique. Multimode resonances with about seven distinct mode peaks in a free-spectral range are observed from 1460 to 1560 nm with the free-spectral range of 12.1 nm near the wavelength of 1510 nm, and the mode refractive index versus the photon energy E (eV) as 3.07152+0.18304E are obtained by fitting the laser spectra with an analytical mode wavelength formula derived by light ray method. In addition, mode field pattern is simulated for cold cavity by two dimensional finite-difference time-domain technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 degrees C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 mu m light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 gm reached maximum at 800 degrees C and decreased dramatically at 1000 degrees C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the optical properties of single CdSe/ZnS nanocrystals by conducting combinations of experiments on antibunching and photoluminescence intermittence under different experimental conditions. Based on photoluminescence in an antibunching experiment, we analyzed the emission lifetime of QDs by using stretched exponentials. The difference between the parameters obtained from average lifetimes and stretched exponents were analyzed by considering the effect of nonradiative emission. An Auger-assisted tunneling model was used to explain the power law exponents of off time distribution. The power law exponent under high excitation power was correlated with a higher Auger ionization rate. Using the parameters obtained from stretched exponential function and power law, the antibunching phenomena at different time and under different excitation intensity were analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InP/GaInAsP square-resonator microlasers with an output waveguide connected to the midpoint of one side of the square are fabricated by standard photolithography and inductively-coupled-plasma etching technique. For a 20-mu m-side square microlaser with a 2-mu m-wide output waveguide, cw threshold current is 11 mA at room temperature, and the highest mode Q factor is 1.0 X 10(4) measured from the mode linewidth at the injection current of 10 mA. Multimode oscillation is observed with the lasing mode wavelength 1546 nm and the side-mode suppression ratio of 20 dB at the injection current of 15 mA. (C) 2008 Optical Society of America