995 resultados para Grupo Light
Resumo:
Characteristics of white organic light-emitting devices based on phosphor sensitized fluorescence are improved by using a multiple-emissive-layer structure, in which a phosphorescent blue emissive layer is sandwiched between red and green&yellow ones. In this device, bis[(4,6-difluorophenyl)-pyridinato-N,C-2] (picolinato), bis(2,4-diphenyl-quinoline) iridium (III) acetylanetonate, fac bis (2-phenylpyridine) iridium, and 5,6,11,12-tetraphenylnaphthacene are used as blue, red, green, and yellow emitters, respectively.
Resumo:
An amorphous photoluminescent material based on a dithienylbenzothiadiazole structure has been used for the fabrication of organic red-light-emitting diodes. The synergistic effects of the electron-transport ability and exciton confinement of the emitting material allow for the fabrication of efficient pure-red-light-emitting devices without a hole blocker.
Resumo:
The biocatalytic growth of gold nanoparticles (Au-NPs) has been employed in the design of new optical biosensors based on the enhanced resonance light scattering (RLS) signals. Both absorption spectroscopy and transmission electron microscopy (TEM) analysis revealed Au-NP seeds could be effectively enlarged upon the reaction with H2O2, an important metabolite that could be generated by many biocatalytic reactions.
Resumo:
A NADH and glucose biosensor based on thionine cross-linked multiwalled carbon nanotubes (MWNTs) and Au nanoparticles (Au NPs) multilayer functionalized indium-doped tin oxide (ITO) electrode were presented in this paper. The effect of light irradiation on the enhancement of bioelectrocatalytic processes of the biocatalytic systems by the photovoltaic effect was investigated.
Resumo:
A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer.
Resumo:
Much attention has been paid to carbazole derivatives for their potential applications as optical materials. For the first time, the blue-light-emitting carbazole chromophore has been covalently bonded to the ordered mesoporous SBA-15 (The resultant hybrid mesoporous materials are denoted as carbazole-SBA-15) by co-condensation of tetraethoxysilane (TEOS) and prepared compound 3-[N-3-(triethoxyilyl)propyl]ureyl-9-ethyl-carbazole (denoted as carbazole-Si) in the presence of Pluronic P123 surfactant. The results of H-1 NMR and Fourier transform infrared (FTIR) reveal that carbazole-Si has been successfully synthesized.
Resumo:
Crystallization kinetics of syndiotactic polypropylene ( sPP) was observed by light attenuation measurements. The initial stages of temperature dependent sPP crystallization fall in the range of Rayleigh scattering and Rayleigh-Debye-Gans scattering. Initial time and growth time of crystallization were obtained, and the trend of crystallization temperature dependent linear attenuation coefficient on the radius and the index of the refraction of the spherulite were evaluated.
Resumo:
A series of novel red-emitting iridium dendrimers functionalized with oligocarbazole host dendrons up to the third generation (red-G3) have been synthesized by a convergent method, and their photophysical, electrochemical, and electroluminescent properties have been investigated. In addition to controlling the intermolecular interactions, oligocarbazole-based dendrons could also participate in the electrochemical and charge-transporting process. As a result, highly efficient electrophosphorescent devices can be fabricated by spin-coating from chlorobenzene solution in different device configurations.
Resumo:
We developed a series of highly efficient blue electroluminescent polymers with dopant-host systems and molecular dispersion features by selecting 1,8-naphthalimide derivatives as the light blue emissive dopant units, choosing polyfluorene as the deep blue emissive polymer host and covalently attaching the dopant units to the side chain of the polymer host. The polymers' EL spectra exhibited both deep blue emission from the polymer host and light blue emission from the dopant units because of the energy transfer and charge trapping from the polymer host to the dopant units.
Resumo:
This paper reports a new patterning method, the complementary-structure micropatterning (CSMP) technique, to fabricate the undercut structures for the passive-matrix display of organic light-emitting diodes (OLEDs). First, the polyvinylpyrrolidone (PVP) stripe patterns with a trapeziform cross-section were formed by micromolding in capillaries. Then the photoresist was spin coated on the substrate with the patterned PVP stripes and developed in water.
Resumo:
It has been experimentally found that molybdenum oxide (MoO3) as the interfacial modification layer on indium-tin-oxide (ITO) in organic light-emitting diodes (OLEDs) significantly improves the efficiency and lifetime. In this paper, the role of MoO3 and MoO3 doped N,N '-di(naphthalene-1-yl)-N,N '-diphenyl-benzidine (NPB) as the interface modification layer on ITO in improvement of the efficiency and stability of OLEDs is investigated in detail by atomic force microscopy (AFM), polarized optical microscopy, transmission spectra, ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).
Resumo:
A soluble nonionic surfactant, polyethylenimine 80% ethoxylated (PEIE) solution, was used as the electron injection material in inverted bottom-emission organic light emitting diodes (OLEDs). The transparent PEIE film was formed on indium-tin-oxide cathode by simple spin-coating method and it was found that the electron injection was greatly enhanced. The devices with PEIE electron injection layer had achieved significant enhancement in luminance and efficiency. The maximum luminance reached 47 000 cd/m(2), and the maximum luminance efficiency and power efficiency arrived at 19.7 cd/A and 10.6 lm/W, respectively.
Resumo:
We demonstrate highly efficient inverted bottom-emission organic light-emitting diodes (IBOLEDs) by using cesium hydroxide (CsOH) doped tris-(8-hydroxyquinoline) aluminum (Alq(3)) as the electron injection layer on indium tin oxide cathode, which could significantly enhance the electron injection, resulting in a large increase in luminance and efficiency. The maximum luminance, current efficiency, and power efficiency reach 21 000 cd/cm(2), 6.5 cd/A, and 3.5 lm/W, respectively, which are 40%-50% higher in efficiency than that of IBOLEDs with cesium carbonate (Cs2CO3) doped Alq(3) as the electron injection layer, where the efficiencies are only 4.5 cd/A and 2.2 lm/W.
Resumo:
Self-assembled monolayers (SAMs) of a series of p-substituted benzoyl chlorides were formed on indium tin oxide as the cathode for the fabrication of inverted bottom-emitting organic light-emitting diodes (IBOLEDs). The studies on the efficiency of electron injection and device performances showed that the direct tunneling of electron and the formation of dipole associated with the monolayer-forming molecule lead to significant enhancement in electron injection. Consequently, the device efficiency is greatly improved.
Resumo:
White light emission from amplified spontaneous emission (ASE) was realized by optically pumping fluorescent dye 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped semiconducting poly(9,9-dioctylfluorene) (PFO) polymer thin films. Two individual ASE peaks originating from DCJTB and PFO were observed by carefully controlling the DCJTB concentration in PFO. The studies of the ASE characteristics of DCJTB:PFO thin films lead to the conclusion that the DCJTB:PFO system with 0.3% w/w DCJTB dopant concentration in PFO showed the best ASE performance.