981 resultados para Green areas
Resumo:
Soybeans grown under water stress associated with high temperatures during seed maturation and pre-harvest may produce green seed (GS) with expressive reduction in seed quality. The objectives of this study were to evaluate the response of different soybean cultivars grown under these stressful conditions regarding their susceptibility to GS production and to determine the chlorophyll retention levels and the chlorophyllase activity in the seeds. Seeds of four soybean cultivars [BRS 133, CD 206, MG/BR 46 (Conquista) and BRSMG 251 (Robusta)] were grown under greenhouse conditions until R5.5. At R6, the plants were transferred to phytotrons under temperature stress (from 28ºC to 36ºC) and with water stresses of 10% gravimetric moisture, no water and normal supply. Seeds were harvested at R9 when the percentage of GS and weight of 100 seeds were determined. The contents of a, b and total chlorophylls and the chlorophyllase activity were also determined. The expression of GS production under these conditions varied among cultivars: Conquista and Robusta were considered more susceptible to the production of GS compared to 'BRS 133' and 'CD 206'. These cultivars produced lower GS levels, lower chlorophyll retention and higher chlorophyllase activity compared to Robusta and Conquista. Soybean plants submitted to water and temperature stresses produced high levels of GS, which were small, light and had high chlorophyll contents and low chlorophyllase activity. The contents of a, b and total chlorophylls in GS were inversely proportional to the chlorophyllase activity.
Resumo:
Hot and dry weather conditions during soybean [Glycine max (L.) Merrill] seed maturation can cause forced maturation of the seed, resulting in the production of high levels of green seed, which may be detrimental to seed germination. These stressful conditions were imposed on soybean plants during seed maturation to investigate the production of green seeds and seed quality. Plants of the CD 206 cultivar were grown in a greenhouse until the R5.5 growing stage and then transferred to phytotrons at R6 and R7.2 for stress induction. Plants were subjected to two temperature regimes, high (28ºC to 36ºC) and normal (19ºC to 26ºC), and four soil water availability conditions, control (adequate water supply), 30% gravimetric moisture (GM), 20% GM and no water supply. Seed were harvested at R9. Green seed percentages and 100-seed weights from the lower, middle and upper thirds of each plant were determined. Seed quality was assessed by germination, tetrazolium (viability and vigor) and electrical conductivity tests. Occurrence of green seed varied from 9% to 86%, depending on the severity of the stresses imposed. High temperature, coupled with no water supply at R6, resulted in a pronounced occurrence of green seeds. There was no difference in the percentage of green seeds among the plant segments. Seed quality was negatively affected by the incidence of green seeds. A procedure for screening soybean genotypes in a phytotron for their tolerance and/or susceptibility to the production of green seeds was developed.
Resumo:
ABSTRACTWe discuss historic trends in large metropolitan areas in Brazil showing that manufacturing has decreased its share in the country but the movement was, in general, more intense in large metropolitan areas and particularly in the São Paulo Metropolitan Area (SPMA). This movement was more intense in the 1980s and in the first half of the 1990s. From mid 1990s up to the end of the 2000s, the manufacturing share trend became flat. We speculate that the first period reflects the exhaustion of the process of import substitution that took place in the previous three decades (1950 to 1980). The second period, from 1993 to 2009, is representative of a new model of growth and the evidence that manufacturing share became flat is reinforcing the idea of a new period in terms of manufacturing employment. While concentration has risen from 1996 to 2005, it decreased again in the second half of the first decade of the 2000s. The SPMA reinvented itself very quickly from late 1970s to mid-2000s.
Resumo:
The textile industry is one of the most polluting industries in the world. The amount of air and water pollution it causes puts a burden on the environment. There are companies who have taken the environmental and social aspects into account in the their production and chosen to operate in a green manner. This thesis studies how the phenomenon of green branding is seen from the perspectives of small Finnish textile companies. The theory used in this thesis has to do with green branding and identity building. The theory is used to analyze the results of the empirical findings. The main research question that the thesis aims to answer is how green branding is perceived within the Finnish textile industry. In order to answer the main research question, empirical data was collected from five relevant companies within the Finnish textile industry. The companies interviewed for the study were WST, Saana ja Olli, RCM, R-collection and Tiensivu. The study was conducted as a multiple case based study where multiple experts from green companies were interviewed. The experts were all owners or employees of companies that have a so-called green brand identity. The data was collected through semi-structured interviews, where the relevant experts from each company were interviewed either by themselves, in pairs or in groups. The data that was collected for this study was primary data, and the results of the study are mainly based on the experiences and opinions of the experts interviewed. The data collected does not cover the entire green textile industry within Finland, but study does however give a fairly comprehensive view of the phenomenon, as the textile industry in Finland is quite concise. The general findings of the study show that all experts from the companies interviewed agreed that a green brand identity does benefit their company in one way or the other. The findings also show contradictions with the older theory (eg. Charter et al. 1999, Pickett et al. 1995), and perhaps give a more modern view of the thoughts within the industry.
Resumo:
Lipids were extracted from Chlorella algae with supercritical hexane. The high lipids yield of approximately 10% was obtained at optimum conditions of 300 rpm stirring speed and 2 h duration compared to the total contents of lipids being 12%. Furthermore, an easiness of hexane recovery may be considered as economically and ecologically attractive. For the first time, in the current work catalytic hydrodeoxygenation (HDO) of Chlorella algal lipids was studied over 5 wt% Ni/H-Y-80 and 5 wt% Ni/SiO2 at 300 C and under 30 bar total pressure in H2. A comparative HDO of stearic acid was carried out under similar conditions. The conversion of lipids was about 35% over 5 wt% Ni/H-Y-80 after 6h, whereas, 5 wt% Ni/SiO2 was totally deactivated after 60 min. The selectivity to hydrocarbons (C15-C18) is 6%. As a comparison, complete conversion of stearic acid over 5 wt% Ni/H-Y-80 was achieved in 6 h. The transformation of lipids proceeded mostly via hydrogenation and hydrolysis with formation of free fatty acid (FFA). The lower activity might be attributed to deactivation of catalysts caused by chlorophylls and carotenoids. Even though the conversion is low, future studies in HDO of lipids extracted from other algae species having higher lipid content could be proposed. Coke resistant catalyst might be considered to improve catalytic activity.