979 resultados para Gravity segregation
Resumo:
OBJECTIVE: Assess the performance of self-expanding venous cannulas for routine use in open-heart surgery. METHODS: Prospective study in 100 unselected consecutive patients undergoing open-heart surgery with either remote or central smart venous cannulation. RESULTS: The study focuses on the 76 consecutive adult patients (mean age 59.2+/-17.3 years; 60 males, 16 females) undergoing surgical procedures with total cardiopulmonary bypass for either valve procedures (42/76 patients=55.3%), ascending aorta and arch repair (20/76 patients=26.3%), coronary artery revascularization (13/76 patients=17.1%) or other procedures (11/76 patients=14.5%) with 14/76 patients (18.4%) undergoing redo surgery and 6/76 patients (7.9%) undergoing small access surgery. The mean pump flow achieved by gravity drainage alone accounted for 5.0+/-0.6l/min (=114% of target) in the entire study population (n=76) as compared to the calculated, theoretical pump flow of 4.4+/-0.5l/min (p<0.0001). For the femoral cannulation sub-group (n=35) pump flow achieved by gravity drainage alone accounted for 4.9+/-0.6l/min (=114% of target) as compared to the calculated theoretical pump flow of 4.3+/-0.4l/min (p<0.0001). The corresponding numbers for trans-subclavian cannulation (n=7) are 5.2+/-0.5l/min (111%) for the pump flow achieved by gravity drainage as compared to the theoretical target flow of 4.7+/-0.4l/min. For the central cannulation sub-group (n=34) mean flow achieved by gravity drainage with a self-expanding venous cannula accounted for 5.1+/-0.7l/min (=116% of target) as compared to the calculated theoretical flow of 4.4+/-0.6l/min (p<0.0001). CONCLUSION: Full or more than target flow was achieved in 97% of the patients studied undergoing CPB with self-expanding venous cannulas and gravity drainage. Remote venous cannulation with self-expanding cannulas provides similar flows as central cannulation. Augmentation of venous return is no longer necessary.
Resumo:
The present work is a thorough investigation of the degree of reproductive isolation between Meccus mazzottii and Meccus longipennis, Meccus picturatus, Meccus pallidipennis and Meccus bassolsae, as well as between M. longipennis and M. picturatus. We examined fertility and segregation of morphological characteristics in two generations of hybrids derived from crosses between these species. The percentage of pairs with (fertile) offspring was highest in the set of crosses between M. longipennis and M. picturatus, and lowest between M. mazzottii and M. picturatus. Most first-generation (F1) individuals from crosses involving M. mazzottii were morphologically similar to this species, while only F1 x F1 progeny of parental crosses between M. mazzottii and M. longipennis had offspring second generation that looked like M. mazzottii. The results indicate that different degrees of reproductive isolation apparently exist among the species of the Phyllosoma complex examined in this study. The biological evidence obtained in this study does not support the proposal that M. longipennis and M. picturatus are full species. It could indicate on the contrary, that both could be considered as subspecies of a single polytypic species. On the other hand, biological evidence supports the proposal that M. mazzottii is a full species.
Resumo:
Auditory spatial deficits occur frequently after hemispheric damage; a previous case report suggested that the explicit awareness of sound positions, as in sound localisation, can be impaired while the implicit use of auditory cues for the segregation of sound objects in noisy environments remains preserved. By assessing systematically patients with a first hemispheric lesion, we have shown that (1) explicit and/or implicit use can be disturbed; (2) impaired explicit vs. preserved implicit use dissociations occur rather frequently; and (3) different types of sound localisation deficits can be associated with preserved implicit use. Conceptually, the dissociation between the explicit and implicit use may reflect the dual-stream dichotomy of auditory processing. Our results speak in favour of systematic assessments of auditory spatial functions in clinical settings, especially when adaptation to auditory environment is at stake. Further, systematic studies are needed to link deficits of explicit vs. implicit use to disability in everyday activities, to design appropriate rehabilitation strategies, and to ascertain how far the explicit and implicit use of spatial cues can be retrained following brain damage.
Resumo:
Balanced lethal systems are more than biological curiosities: as theory predicts, they should quickly be eliminated through the joint forces of recombination and selection. That such systems might become fixed in natural populations poses a challenge to evolutionary theory. Here we address the case of a balanced lethal system fixed in crested newts and related species, which makes 50% of offspring die early in development. All adults are heteromorphic for chromosome pair 1. The two homologues (1A and 1B) have different recessive deleterious alleles fixed on a nonrecombining segment, so that heterozygotes are viable, while homozygotes are lethal. Given such a strong segregation load, how could autosomes stop recombining? We propose a role for a sex-chromosome turnover from pair 1 (putative ancestral sex chromosome) to pair 4 (currently active sex chromosome). Accordingly, 1A and 1B represent two variants (Y(A) and Y(B)) of the Y chromosome from an ancestral male-heterogametic system. We formalize a scenario in which turnovers are driven by sex ratio selection stemming from gene-environment interactions on sex determination. Individual-based simulations show that a balanced lethal system can be fixed with significant likelihood, provided the masculinizing allele on chromosome 4 appears after the elimination of the feminizing allele on chromosome 1. Our study illustrates how strikingly maladaptive traits might evolve through natural selection.