980 resultados para Granuloma, Giant Cell


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as similar to 20 mu m(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow of liquid/liquid dispersions have been investigated in a Hele-Shaw cell which contained a thin disk held between two parallel plates. This device offers a well defined flow field and also permits visual observation of the dispersed drop movement. The dispersed drops coalesce with the disk for the systems where the dispersed phase wets the disk surface. The dispersed phase accumulate at the downstream end of the disk and they detach from there as blobs. Through an accurate measurement of accumulated dispersed phase volume, the coalescence rate was determined. The coalescence efficiency in the Hele Shaw cell is determined by dividing the coalescence hate by the undisturbed flow rate of the dispersed phase through an area equal to the projected area of the disk on a plane normal to the flow direction. The coalescence efficiency first increases and then decreases with the flow rate of dispersion. The coalescence rate/disk dimensions increases with the decrease in the disk dimensions. The rate of coalescence increases with the increase in the dispersed drop diameter and it decreases with the increase in the continuous phase viscosity. The presence of surfactants reduces the coalescence rate. All these results are quantitatively explained through a model, which takes into account several important features like various mechanism of drainage, the roles of dispersion and continuous phase viscosities, and the drop deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase relations in the system Ca-Pb-O at 1100 K have been determined by equilibrating 18 compositions in the ternary and identifying the phases present in quenched samples by X-ray diffraction and energy dispersive X-ray analysis (EDX). Only one ternary compound Ca2PbO4 was found to be present. The compound coexists with CaO and PbO. The intermetallic compounds Ca2Pb, Ca5Pb3 and CaPb and liquid alloys are in equilibrium with CaO. The standard Gibbs energies of formation of Ca2PbO4 (880 - 1100 K) and Pb3O4 (770 - 910 K) were determined using solid-state cells based on yttria-stabilized zirconia as the solid electrolyte. Pure oxygen gas at 0.1 MPa was used as the reference electrode. For measurements on Ca2PbO4, a novel cell design with three electrodes in series, separated by solid electrolyte membranes, was used to avoid polarization of the electrode containing three solid phases. Two three-phase electrodes were used. The first absorbs the electrochemical flux of oxygen from the reference electrode to the measuring electrode. The other three-phase electrode, which is unaffected by the oxygen flux through the solid electrolyte, is used for electromotive force (EMF) measurement. The results from EMF studies were cross-checked using thermogravimetry (TG) under controlled oxygen partial pressures. The stability of Pb3O4 was investigated using a conventional solid-state cell with RuO2 electrodes. The results can be summarized by the following equations: 2CaO + PbO +1/2O(2) --> Ca2PbO4 Delta(r)G degrees/J mol(-1) = (- 128340 + 93.21 T/K) +/- 200 3PbO + 1/2O(2) --> Pb3O4 Delta(r)G degrees/J mol(-1) = (- 70060 + 77.5 T/K) +/- 150

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized five new cholesterol based gemini cationic lipids possessing hydroxyethyl (-CH2CH2OH) function on each head group, which differ in the length of the polymethylene spacer chain. These gemini lipids are important for gene delivery processes as they possess pre-optimized molecular features, e. g., cholesterol backbone, ether linkage and a variable spacer chain between both the headgroups of the gemini lipids. Cationic liposomes were prepared from each of these lipids individually and as a mixture of individual cationic gemini lipid and 1,2-dioleoyl phosphatidylethanolamine (DOPE). Each gemini lipid based formulation induced better transfection activity than that of their monomeric counterpart. One such gemini lipid with a -(CH2)(12)-spacer, HG-12, showed dramatic increase in the mean fluorescence intensity due to the expression of green-fluorescence protein (GFP) in the presence of 10% FBS compared to the conditions where there was no serum. Other gemini lipids retained their gene transfection efficiency without any marked decrease in the presence of serum. The only exception was seen with the gemini with a -(CH2)(3)-spacer, HG-3, which on gene transfection in the presence of 10% FBS lost similar to 70% of its transfection efficiency. Overall the gemini lipid with a -(CH2)(5)-spacer, HG-5, showed the highest transfection activity at N/P (lipid/DNA) ratio of 0.5 and lipid : DOPE molar ratio of 2. Upon comparison of the relevant parameters, e. g., %-transfected cells, the amount of DNA transfected to each cell and %-cell viability all together against Lipofectamine 2000, one of the best commercial transfecting agents, the optimized lipid formulation based on DOPE/HG-5 was found to be comparable. In terms of its ability to induce gene-transfer in the presence of serum and shelf-life DOPE/HG-5 liposome was found to be superior to its commercial counterpart. Confocal imaging analysis confirmed that in the presence of 10% serum using a Lipid : DOPE of 1 : 4 and N/P charge ratio of 0.75 with 1.2 mu g DNA per well, HG-5 is better than Lipofectamine 2000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model describing the dynamics of mammalian cell growth in hollow fibre bioreactor operated in closed shell mode is developed. Mammalian cells are assumed to grow as an expanding biofilm in the extra-capillary space surrounding the fibre. Diffusion is assumed to be the dominant process in the radial direction while axial convection dominates in the lumen of the bioreactor. The transient simulation results show that steep gradients in the cell number are possible under the condition of substrate limitation. The precise conditions which result in nonuniform growth of cells along the length of the bioreactor are delineated. The effect of various operating conditions, such as substrate feed rate, length of the bioreactor and diffusivity of substrate in different regions of the bioreactor, on the bioreactor performance are evaluated in terms of time required to attain the steady-state. The rime of growth is introduced as a measure of effectiveness factor for the bioreactor and is found to be dependent on two parameters, a modified Peclet number and a Thiele modulus. Diffusion, reaction and/or convection control regimes are identified based on these two parameters. The model is further extended to include dual substrate growth limitations, and the relative growth limiting characteristics of two substrates are evaluated. (C) 1997 Elsevier Science Ltd.