998 resultados para Grab
Resumo:
Composition of clay minerals in the <0.001 mm size fraction from the uppermost layer of bottom sediments in the northern Amur Bay was determined by X-ray powder diffraction analysis, and enrichment of 33 elements in the <0.001 mm and <0.01 mm size fractions of surface sediments from a number of sites at the marginal filter of the Razdol'naya River were studied by ICP-MS. Fe, U, and chalcophile elements occur in the highest concentrations in sediments from all sampling sites within the filter. The bottom sediments are not enriched in trace, alkali, and alkaline earth elements. Maximum concentrations of chemical elements were found in deposits from the brackish part of the marginal filter, perhaps, because of formation of Fe and Mn (Al) hydroxides. Bottom sediments at the boundary between the brackish and marine parts of the filter contain the lowest concentrations of the examined elements.
Resumo:
Dinoflagellate cysts were studied in 42 samples from surface sediments of the White Sea. Total concentration of dinocysts varies from single cysts to 25000 cyst/g of dry sediments, which reflects biological productivity in White Sea waters and regional particular features of sedimentation processes. The highest concentrations are observed in silts; they are related to the regions of propagation of highly productive Barents Sea waters in the White Sea. Generally, spatial distribution of dinocyst species in the surface sediments corresponds to distribution of the major types of water masses in the White Sea. Cysts of relatively warm-water species (Operculodinium centrocarpum, Spiniferites sp.) of North Atlantic origin that dominate in the sediments indicate an intensive intrusion of Barents Sea water masses to the White Sea along with hydrological dwelling conditions in the White Sea favorable for development of these species during their vegetation period. The cold-water dinocyst assemblage (Islandinium minutum, Polykrikos sp.) is rather strictly confined to inner parts of shallow-water bays, firstly, those adjacent to the Onega and Severnaya Dvina river mouths.
Resumo:
Composition and distribution of bottom fauna, especially scleractinian and gorgonarian corals, collected in the area of the Canary upwelling are discussed. Five species of scleractinian corals and one gorgonarian coral were found. Dasmosmillia lymani, Flabellum angulare, Leptopsammia chevalieri, and Bebryce mollis are new in the investigated area. It is shown that bottom fauna of the Canary upwelling area could be regarded as intermediate between the ordinary shallow-water community and extremely oligomixed fauna of intensive upwellings.
Resumo:
The study of diatoms and benthic foraminifers from the southeastern shelf of the Laptev Sea shows that their most diverse and abundant recent assemblages populate the peripheral underwater part of the Lena River delta representing the marginal filter of the sea. This area is characterized by intense interaction between fresh waters of Siberian rivers and basin seawater, Atlantic one included. Local Late Holocene (~last 2300 years) environments reflect the main regional and global paleoclimatic changes, the Medieval Warm Period (~600-1100 years B.P.) and the Little Ice Age (~100-600 years B.P.) inclusive. In addition, composition and distribution of planktonic foraminifers implies strong influence of Atlantic water during the Holocene optimum ~5100-6200 years B.P.
Resumo:
In the biologically productive area on the Southwest Africa shelf a current process of diagenetic phosphorite formation occurs. Remains of phytoplankton are the main source of phosphorus in host bottom sediments. Phosphorus concentrates in nodules due to its redistribution in bottom sediments and precipitation from interstitial waters. Accumulation of the phosphate nodules, as well as of scattered fish bone debris in sediments occurs at sudden change in hydrological conditions and removal of fine sediment fractions due to increased bottom currents or during transgressions.
Resumo:
Simultaneous determinations of the microplankton biomass by direct microscopy and by measuring concentration of adenosine triphosphate (ATP) in samples from different depths of the Eastern Pacific revealed considerable differences between values obtained. With the exception of 3 of 62 determinations, the biomass determined from ATP exceeded that measured by microscopy; the latter averaged about 10% of the former for the region as a whole. This sharp difference is largely due to underestimation of ultramicroscopic cells by direct microscopy and to substantial variations in the factor used to convert ATP concentrations to cell biomass.