999 resultados para Glycolytic activity
Resumo:
Tabanid females are better known as hematophagous on man and other mammals, and linked to mechanical transmission of parasites. The association between tabanids and reptiles is poorly known, but has been gaining more corroboration through experiments and occasional observation in the tropics. The present study was conducted at a military base (CIGS/BI-2), situated 54 km from Manaus, Amazonas, in a small stream in a clearing (02°45'33"S; 59°51'03"W). Observations were made monthly, from April 1997 to March 1998, during two consecutive days. At the same time, other vertebrate animals were offered, including humans. However in this paper only data obtained on a common caiman, Caiman crocodilus (Linn.), and an anaconda, Eunectes murinus (Linn.), in diurnal observations from 05:30 a.m. to 18:30 p.m., will be discussed. A total of 254 tabanid specimens were collected, 40 from the anaconda and 214 from the caiman. Four tabanid species were recorded on these two reptiles: Stenotabanus cretatus Fairchild, S. bequaerti Rafael et al., Phaeotabanus nigriflavus (Kröber) and Tabanus occidentalis Linn. Diurnal activities showed species-specific patterns. The first three species occurred only in the dry season. T. occidentalis occurred during the whole observation period, and with increased frequency at the end of the dry season. We observed preferences for body area and related behavior of the host. Observations on the attack of tabanids on one dead caiman are also presented.
Resumo:
The epidemiology of the transmission of malaria parasites varies ecologically. To observe some entomological aspects of the malaria transmission in an urban environment, a longitudinal survey of anopheline fauna was performed in Boa Vista, Roraima, Brazil. A total of 7,263 anophelines was collected in human bait at 13 de Setembro and Caranã districts: Anopheles albitarsis sensu lato (82.8%), An. darlingi (10.3%), An. braziliensis (5.5%), An. peryassui (0.9%) and An. nuneztovari (0.5%). Nightly 12 h collections showed that An. albitarsis was actively biting throughout the night with peak activities at sunset and at midnight. An. darlingi bit during all night and did not demonstrate a defined biting peak. Highest biting indices, entomological inoculation rates and malaria cases were observed seasonally during the rainy season (April-November). Hourly collections showed host seek activity for all mosquitoes peaked during the first hour after sunset. An. darlingi showed the highest plasmodial malaria infection rate followed by An. albitarsis, An. braziliensis and An. nuneztovari (8.5%, 4.6%, 3% and 2.6%, respectively). An. albitarsis was the most frequently collected anopheline, presented the highest biting index and it was the second most frequently collected infected species infected with malaria parasites. An. albitarsis and An. darlingi respectively, are the primary vectors of malaria throughout Boa Vista.
Resumo:
The insecticidal activity and residual effect of two formulations of lambdacyhalothrin were evaluated with Rhodnius prolixus;laboratory and field tests were conducted in the State of Chiapas, Mexico. The results indicate that the lethal concentrations of the active ingredient of SC (LC50 = 2.37 and LC90 = 8.5 mg, a.i./m²) were 4-8 times than those with the insecticide WP applied on R. prolixus bugs in palm leaves, a common building material for thatched roofs. Other investigators in South America recommended applying 30 mg a.i./m² in porous materials; we obtained that the products WP and SC were 3.5 and 16 times more effective on palm leaves. Regarding the evaluation of the residual effects in field spraying, there was up to 15 months persistence after the application of WP in two doses (8.6 mg a.i./m² and 3.752 mg a.i./m²) with SC. We consider R. prolixus highly susceptible to the employed pyrethroids; they could be used to control this vector in the state of Chiapas, Mexico.
Resumo:
The mechanical behaviour of ectodermal cells in the area opaca and the supracellular organization of fibronectin in the adjacent extracellular matrix were studied in whole chick blastoderms developing in vitro. The pattern of spontaneous mechanical activity and its modification by immunoglobulins against fibronectin were determined using a real-time image-analysis system. The pattern of fibronectin was studied using immunocytochemical techniques. It was found that the ectodermal cells in the area opaca actively develop a radially oriented contraction, which leads to a distension of the area pellucida from which the embryo develops. Abnormally increased tension resulted in perturbations of gastrulation and neurulation. An optimized mechanical equilibrium within the blastoderm seems to be necessary for normal development. Anti-fibronectin antibodies applied to the basal side of the blastoderm led rapidly and reversibly to an increase of tension in the contracted cells. This observation indicates that modifications of the extracellular matrix can be transmitted to cytoskeletal elements within adjacent cells. The extracellular matrix of the area opaca contains fibronectin arranged in radially oriented fibrils. This orientation corresponds to the direction of migration of the mesodermal cells. Interestingly, the radial pattern of fibronectin is found in the regions where the ectodermal cells are contracted and develop radially oriented forces. This observation suggests that the supracellular assembly of the extracellular materials could be influenced by the mechanical activity of adjacent cells. Possible modulations of the supracellular organization of extracellular matrix by other factors, e.g. diffusible metabolites, is also discussed. The presence of characteristically organized extracellular matrix components, of spatially differentiated cell activities and of reciprocal interactions between them makes the young chick blastoderm an excellent system for physiological studies of the coordinated cellular activities that lead to changes in form, complexity and function.
Resumo:
This report presents data collected through a survey of long-stay units in 2001. The aim of the survey is to provide statistics on the number of beds available for long-term care, how the beds are used and the types of patients who occupy these beds. In order to present the data this report has been divided into a number of sections. This introductory section examines how data was collected and analysed and gives a summary of the results. Download document here
Resumo:
Long-Stay Activity Report 2002 This report presents data collected through a survey of long-stay units in 2002. The aim of the survey is to provide statistics on the number of beds available for long-term care, how the beds are used and the types of patients who occupy these beds. Click here to download PDF 420kb
Resumo:
Nitroarylidenemalononitriles and their cyanoacetamide derivatives with remarkable anti-epimastigote properties, were synthesized attempting to obtain new 3,5-diamino-4-(5'-nitroarylidene)-4H-thiadiazine 1,1-dioxide derivatives, which in previous reports had shown anti-Trypanosoma cruzi activity. Tests to evaluate the cytotoxicity of compounds were performed on J774 macrophages. 5-nitro-2-thienyl-malononitrile (5NO2TM), was the only product which maintained a high anti-epimastigote activity at concentrations in which it was no longer cytotoxic, thus it was assayed against intracellular amastigotes. Its anti-amastigote activity was similar to that of nifurtimox. Afterwards in vivo toxicity and anti-chagasic activity were determined. A reduction in parasitemia was observed.
Resumo:
OBJECTIVEIncrease in adipose cAMP response binding protein (CREB) activity promotes adipocyte dysfunction and systemic insulin resistance in obese mice. This is achieved by increasing the expression of activating transcription factor 3 (ATF3). In this study we investigated whether impaired expression of the inducible cAMP early repressor (ICER), a transcriptional antagonist of CREB, is responsible for the increased CREB activity in adipocytes of obese mice and humans.RESEARCH DESIGN AND METHODSTotal RNA and nuclear proteins were prepared from visceral adipose tissue (VAT) of human nonobese or obese subjects, and white adipose tissue (WAT) of C57Bl6-Rj mice that were fed with normal or high-fat diet for 16 weeks. The expression of genes was monitored by real-time PCR, Western blotting, and electromobility shift assays. RNA interference was used to silence the expression of Icer.RESULTSThe expression of Icer/ICER was reduced in VAT and WAT of obese humans and mice, respectively. Diminution of Icer/ICER was restricted to adipocytes and was accompanied by a rise of Atf3/ATF3 and diminution of Adipoq/ADIPOQ and Glut4/GLUT4. Silencing the expression of Icer in 3T3-L1 adipocytes mimicked the results observed in human and mice cells and hampered glucose uptake, thus confirming the requirement of Icer for appropriate adipocyte function.CONCLUSIONSImpaired expression of ICER contributes to elevation in CREB target genes and, therefore, to the development of insulin resistance in obesity.
Resumo:
Click here to download PDF
Resumo:
The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.
Resumo:
Click here to download PDF
Resumo:
This report presents data collected through a survey of long-stay units in 1997. The aim of the survey is to provide statistics on the number of beds available for long-term care, how the beds are used and the types of patients who occupy these beds Download the Report here
Resumo:
This report presents data collected through a survey of long-stay units in 1998. The aim of the survey is to provide statistics on the number of beds available for long-term care, how the beds are used and the types of patients who occupy these beds Download the Report here
Resumo:
Résumé grand public :Le cerveau se compose de cellules nerveuses appelées neurones et de cellules gliales dont font partie les astrocytes. Les neurones communiquent entre eux par signaux électriques et en libérant des molécules de signalisation comme le glutamate. Les astrocytes ont eux pour charge de capter le glucose depuis le sang circulant dans les vaisseaux sanguins, de le transformer et de le transmettre aux neurones pour qu'ils puissent l'utiliser comme source d'énergie. L'astrocyte peut ensuite utiliser ce glucose de deux façons différentes pour produire de l'énergie : la première s'opère dans des structures appelées mitochondries qui sont capables de produire plus de trente molécules riches en énergie (ATP) à partir d'une seule molécule de glucose ; la seconde possibilité appelée glycolyse peut produire deux molécules d'ATP et un dérivé du glucose appelé lactate. Une théorie couramment débattue propose que lorsque les astrocytes capturent le glutamate libéré par les neurones, ils libèrent en réponse du lactate qui servirait de base énergétique aux neurones. Cependant, ce mécanisme n'envisage pas une augmentation de l'activité des mitochondries des astrocytes, ce qui serait pourtant bien plus efficace pour produire de l'énergie.En utilisant la microscopie par fluorescence, nous avons pu mesurer les changements de concentrations ioniques dans les mitochondries d'astrocytes soumis à une stimulation glutamatergique. Nous avons démontré que les mitochondries des astrocytes manifestent des augmentations spontanées et transitoires de leur concentrations ioniques, dont la fréquence était diminuée au cours d'une stimulation avec du glutamate. Nous avons ensuite montré que la capture de glutamate augmentait la concentration en sodium et acidifiait les mitochondries des astrocytes. En approfondissant ces mécanismes, plusieurs éléments ont suggéré que l'acidification induite diminuerait le potentiel de synthèse d'énergie d'origine mitochondriale et la consommation d'oxygène dans les astrocytes. En résumé, l'ensemble de ces travaux suggère que la signalisation neuronale impliquant le glutamate dicte aux astrocytes de sacrifier temporairement l'efficacité de leur métabolisme énergétique, en diminuant l'activité de leurs mitochondries, afin d'augmenter la disponibilité des ressources énergétiques utiles aux neurones.Résumé :La remarquable efficacité du cerveau à compiler et propager des informations coûte au corps humain 20% de son budget énergétique total. Par conséquent, les mécanismes cellulaires responsables du métabolisme énergétique cérébral se sont adéquatement développés pour répondre aux besoins énergétiques du cerveau. Les dernières découvertes en neuroénergétique tendent à démontrer que le site principal de consommation d'énergie dans le cerveau est situé dans les processus astrocytaires qui entourent les synapses excitatrices. Un nombre croissant de preuves scientifiques a maintenant montré que le transport astrocytaire de glutamate est responsable d'un coût métabolique important qui est majoritairement pris en charge par une augmentation de l'activité glycolytique. Cependant, les astrocytes possèdent également un important métabolisme énergétique de type mitochondrial. Par conséquent, la localisation spatiale des mitochondries à proximité des transporteurs de glutamate suggère l'existence d'un mécanisme régulant le métabolisme énergétique astrocytaire, en particulier le métabolisme mitochondrial.Afin de fournir une explication à ce paradoxe énergétique, nous avons utilisé des techniques d'imagerie par fluorescence pour mesurer les modifications de concentrations ioniques spontanées et évoquées par une stimulation glutamatergique dans des astrocytes corticaux de souris. Nous avons montré que les mitochondries d'astrocytes au repos manifestaient des changements individuels, spontanés et sélectifs de leur potentiel électrique, de leur pH et de leur concentration en sodium. Nous avons trouvé que le glutamate diminuait la fréquence des augmentations spontanées de sodium en diminuant le niveau cellulaire d'ATP. Nous avons ensuite étudié la possibilité d'une régulation du métabolisme mitochondrial astrocytaire par le glutamate. Nous avons montré que le glutamate initie dans la population mitochondriale une augmentation rapide de la concentration en sodium due à l'augmentation cytosolique de sodium. Nous avons également montré que le relâchement neuronal de glutamate induit une acidification mitochondriale dans les astrocytes. Nos résultats ont indiqué que l'acidification induite par le glutamate induit une diminution de la production de radicaux libres et de la consommation d'oxygène par les astrocytes. Ces études ont montré que les mitochondries des astrocytes sont régulées individuellement et adaptent leur activité selon l'environnement intracellulaire. L'adaptation dynamique du métabolisme énergétique mitochondrial opéré par le glutamate permet d'augmenter la quantité d'oxygène disponible et amène au relâchement de lactate, tous deux bénéfiques pour les neurones.Abstract :The remarkable efficiency of the brain to compute and communicate information costs the body 20% of its total energy budget. Therefore, the cellular mechanisms responsible for brain energy metabolism developed adequately to face the energy needs. Recent advances in neuroenergetics tend to indicate that the main site of energy consumption in the brain is the astroglial process ensheating activated excitatory synapses. A large body of evidence has now shown that glutamate uptake by astrocytes surrounding synapses is responsible for a significant metabolic cost, whose metabolic response is apparently mainly glycolytic. However, astrocytes have also a significant mitochondrial oxidative metabolism. Therefore, the location of mitochondria close to glutamate transporters raises the question of the existence of mechanisms for tuning their energy metabolism, in particular their mitochondrial metabolism.To tackle these issues, we used real time imaging techniques to study mitochondrial ionic alterations occurring at resting state and during glutamatergic stimulation of mouse cortical astrocytes. We showed that mitochondria of intact resting astrocytes exhibited individual spontaneous and selective alterations of their electrical potential, pH and Na+ concentration. We found that glutamate decreased the frequency of mitochondrial Na+ transient activity by decreasing the cellular level of ATP. We then investigated a possible link between glutamatergic transmission and mitochondrial metabolism in astrocytes. We showed that glutamate triggered a rapid Na+ concentration increase in the mitochondrial population as a result of plasma-membrane Na+-dependent uptake. We then demonstrated that neuronally released glutamate also induced a mitochondrial acidification in astrocytes. Glutamate induced a pH-mediated and cytoprotective decrease of mitochondrial metabolism that diminished oxygen consumption. Taken together, these studies showed that astrocytes contain mitochondria that are individually regulated and sense the intracellular environment to modulate their own activity. The dynamic regulation of astrocyte mitochondrial energy output operated by glutamate allows increasing oxygen availability and lactate production both being beneficial for neurons.
Resumo:
This report presents data collected through a survey of long-stay units in 1999. The aim of the survey is to provide statistics on the number of beds available for long-term care, how the beds are used and the types of patients who occupy these beds Download the Report here