995 resultados para Geometry, Solid.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulent combustion of stoichiometric hydrogen-air mixture is simulated using direct numerical simulation methodology, employing complex chemical kinetics. Two flame configurations, freely propagating and V-flames stabilized behind a hot rod, are simulated. The results are analyzed to study the influence of flame configuration on the turbulence-scalar interaction, which is critical for the scalar gradient generation processes. The result suggests that this interaction process is not influenced by the flame configuration and the flame normal is found to align with the most extensive strain in the region of intense heat release. The combustion in the rod stabilized flame is found to be flamelet like in an average sense and the growth of flame-brush thickness with the downstream distance is represented well by Taylor theory of turbulent diffusion, when the flame-brushes are non-interacting. The thickness is observed to saturate when the flame-brushes interact, which is found to occur in the simulated rod stabilized flame with Taylor micro-scale Reynolds number of 97. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents experimental optimization of number and geometry of nanotube electrodes in a liquid crystal media from wavefront aberrations for realizing nanophotonic devices. The refractive-index gradient profiles from different nanotube geometries-arrays of one, three, four, and five-were studied along with wavefront aberrations using Zernike polynomials. The optimizations help the device to make application in the areas of voltage reconfigurable microlens arrays, high-resolution displays, wavefront sensors, holograms, and phase modulators. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10 6 A cm -2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10 4A cm -2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNS of planar turbulent flame and turbulent V-flame has been conducted to investigate turbulence-scalar interaction in relatively practical turbulent combustion. Several turbulence quantities are examined for the understandings of fundamental characteristics of flow field in V-flame. Due to the additional turbulence production by the hot-rod, turbulence does not simply decay in V-flame. Turbulence-scalar interaction, scalar alignments with the principal strain rate in other words, is then clarified. The competition of turbulence and dilatation can be found in the conditional PDF of flame normal alignment. The results suggests that the alignment characteristics in high Da flames are applicable to low Da flames in the region of intense heat release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation into the seismic behaviour of municipal solidwaste (MSW) landfills by dynamic centrifuge testing was undertaken. This paper presents physical modelling of MSW landfills for dynamic centrifuge testing, with regard to the following research areas: 1. amplification characteristics of municipal solid waste; 2. tension induced in geomembranes placed on landfill slopes due to earthquake loading; 3. damage to landfill liners due to liquefaction of foundation soil. A model waste, that has engineering properties similar to MSW, is presented. A model geomembrane that can be used in centrifuge tests is also presented. Results of dynamic centrifuge tests with the model geomembrane showed that an earthquake loading induces additional permanent tension (∼25%) in the geomembrane. © 2006 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lattice Boltzmann method is used to model gas-solid reactions where the composition of both the gas and solid phase changes with time, while the boundary between phases remains fixed. The flow of the bulk gas phase is treated using a multiple relaxation time MRT D3Q19 model; the dilute reactant is treated as a passive scalar using a single relaxation time BGK D3Q7 model with distinct inter- and intraparticle diffusivities. A first-order reaction is incorporated by modifying the method of Sullivan et al. [13] to include the conversion of a solid reactant. The detailed computational model is able to capture the multiscale physics encountered in reactor systems. Specifically, the model reproduced steady state analytical solutions for the reaction of a porous catalyst sphere (pore scale) and empirical solutions for mass transfer to the surface of a sphere at Re=10 (particle scale). Excellent quantitative agreement between the model and experiments for the transient reduction of a single, porous sphere of Fe 2O 3 to Fe 3O 4 in CO at 1023K and 10 5Pa is demonstrated. Model solutions for the reduction of a packed bed of Fe 2O 3 (reactor scale) at identical conditions approached those of experiments after 25 s, but required prohibitively long processor times. The presented lattice Boltzmann model resolved successfully mass transport at the pore, particle and reactor scales and highlights the relevance of LB methods for modelling convection, diffusion and reaction physics. © 2012 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, the rarefaction and roughness effects on the heat transfer process in gas microbearings are investigated. A heat transfer model is developed by introducing two-variable Weierstrass-Mandelbrot (W-M) function with fractal geometry. The heat transfer problem in the multiscale self-affine rough microbearings at slip flow regime is analyzed and discussed. The results show that rarefaction has more significant effect on heat transfer in rough microbearings with lower fractal dimension. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. The heat transfer performance can be optimized with increasing fractal dimension of the rough surface. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While static equilibria of flexible strings subject to various load types (gravity, hydrostatic pressure, Newtonian wind) is well understood textbook material, the combinations of the very same loads can give rise to complex spatial behaviour at the core of which is the unilateral material constraint prohibiting compressive loads. While the effects of such constraints have been explored in optimisation problems involving straight cables, the geometric complexity of physical configurations has not yet been addressed. Here we show that flexible strings subject to combined smooth loads may not have smooth solutions in certain ranges of the load ratios. This non-smooth phenomenon is closely related to the collapse geometry of inflated tents. After proving the nonexistence of smooth solutions for a broad family of loadings we identify two alternative, critical geometries immediately preceding the collapse. We verify these analytical results by dynamical simulation of flexible chains as well as with simple table-top experiments with an inflated membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional structure of very large samples of monodisperse bead packs is studied by means of X-Ray Computed Tomography. We retrieve the coordinatesofeach bead inthe pack and wecalculate the average coordination number by using the tomographic images to single out the neighbors in contact. The results are compared with the average coordination number obtained in Aste et al. (2005) by using a deconvolution technique. We show that the coordination number increases with the packing fraction, varying between 6.9 and 8.2 for packing fractions between 0.59 and 0.64. © 2005 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strategy to extract turbulence structures from direct numerical simulation (DNS) data is described along with a systematic analysis of geometry and spatial distribution of the educed structures. A DNS dataset of decaying homogeneous isotropic turbulence at Reynolds number Reλ = 141 is considered. A bandpass filtering procedure is shown to be effective in extracting enstrophy and dissipation structures with their smallest scales matching the filter width, L. The geometry of these educed structures is characterized and classified through the use of two non-dimensional quantities, planarity' and filamentarity', obtained using the Minkowski functionals. The planarity increases gradually by a small amount as L is decreased, and its narrow variation suggests a nearly circular cross-section for the educed structures. The filamentarity increases significantly as L decreases demonstrating that the educed structures become progressively more tubular. An analysis of the preferential alignment between the filtered strain and vorticity fields reveals that vortical structures of a given scale L are most likely to align with the largest extensional strain at a scale 3-5 times larger than L. This is consistent with the classical energy cascade picture, in which vortices of a given scale are stretched by and absorb energy from structures of a somewhat larger scale. The spatial distribution of the educed structures shows that the enstrophy structures at the 5η scale (where η is the Kolmogorov scale) are more concentrated near the ones that are 3-5 times larger, which gives further support to the classical picture. Finally, it is shown by analysing the volume fraction of the educed enstrophy structures that there is a tendency for them to cluster around a larger structure or clusters of larger structures. Copyright © 2012 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light metal sandwich panel structures with cellular cores have attracted interest for multifunctional applications which exploit their high bend strength and impact energy absorption. This concept has been explored here using a model 6061-T6 aluminum alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding reduced the strength and ductility in the welds and a narrow heat affected zone on either side of the weld by approximately 30%. Square, edge clamped sandwich panels and solid plates of equal mass per unit area were subjected to localized impulsive loading by the impact of explosively accelerated, water saturated, sand shells. The hydrodynamic load and impulse applied by the sand were gradually increased by reducing the stand-off distance between the test charge and panel surfaces. The sandwich panels suffered global bending and stretching, and localized core crushing. As the pressure applied by the sand increased, face sheet fracture by a combination of tensile stretching and shear-off occurred first at the two clamped edges of the panels that were parallel with the corrugation and weld direction. The plane of these fractures always lay within the heat affected zone of the longitudinal welds. For the most intensively loaded panels additional cracks occurred at the other clamped boundaries and in the center of the panel. To investigate the dynamic deformation and fracture processes, a particle-based method has been used to simulate the impulsive loading of the panels. This has been combined with a finite element analysis utilizing a modified Johnson-Cook constitutive relation and a Cockcroft-Latham fracture criterion that accounted for local variation in material properties. The fully coupled simulation approach enabled the relationships between the soil-explosive test charge design, panel geometry, spatially varying material properties and the panel's deformation and dynamic failure responses to be explored. This comprehensive study reveals the existence of a strong instability in the loading that results from changes in sand particle reflection during dynamic evolution of the panel's surface topology. Significant fluid-structure interaction effects are also discovered at the sample sides and corners due to changes of the sand reflection angle by the edge clamping system. © 2012 Elsevier Ltd. All rights reserved.