977 resultados para Genetic Complementation Test
Resumo:
We compared the indirect immunofluorescence assay (IFA) with Western blot (Wb) as a confirmatory method to detect antibodies anti retrovirus (HIV-1 and HTLV-I/II). Positive and negative HIV-1 and HTLV-I/II serum samples from different risk populations were studied. Sensitivity, specificity, positive, negative predictive and kappa index values were assayed, to assess the IFA efficiency versus Wb. The following cell lines were used as a source of viral antigens: H9 ( HTLV-III b); MT-2 and MT-4 (persistently infected with HTLV-I) and MO-T (persistently infected with HTLV-II). Sensitivity and specificity rates for HIV-1 were 96.80% and 98.60% respectively, while predictive positive and negative values were 99.50% and 92.00% respectively. No differences were found in HIV IFA performance between the various populations studied. As for IFA HTLV system, the sensitivity and specificity values were 97.91% and 100% respectively with positive and negative predictive values of 100% and 97.92%. Moreover, the sensitivity of the IFA for HTLV-I/II proved to be higher when the samples were tested simultaneously against both antigens (HTLV-I-MT-2 and HTLV-II-MO-T). The overall IFA efficiency for HIV-1 and HTLV-I/II-MT-2 antibody detection probed to be very satisfactory with an excellent correlation with Wb (Kappa indexes 0.93 and 0.98 respectively). These results confirmed that the IFA is a sensitive and specific alternative method for the confirmatory diagnosis of HIV-1 and HTLV-I/II infection in populations at different levels of risk to acquire the infection and suggest that IFA could be included in the serologic diagnostic algorithm.
Resumo:
Susceptibility of snails to infection by certain trematodes and their suitability as hosts for continued development has been a bewildering problem in host-parasite relationships. The present work emphasizes our interest in snail genetics to determine what genes or gene products are specifically responsible for susceptibility of snails to infection. High molecular weight DNA was extracted from both susceptible and non-susceptible snails within the same species Biomphalaria tenagophila. RAPD was undertaken to distinguish between the two types of snails. Random primers (10 mers) were used to amplify the extracted DNA by the polymerase chain reaction (PCR) followed by polyacrylamide gel electrophoresis (PAGE) and silver staining. The results suggest that RAPD represents an efficient means of genome comparison, since many molecular markers were detected as genetic variations between susceptible and non-susceptible snails.