997 resultados para Generator matrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physically Unclonable Functions (PUFs), exploit inherent manufacturing variations and present a promising solution for hardware security. They can be used for key storage, authentication and ID generations. Low power cryptographic design is also very important for security applications. However, research to date on digital PUF designs, such as Arbiter PUFs and RO PUFs, is not very efficient. These PUF designs are difficult to implement on Field Programmable Gate Arrays (FPGAs) or consume many FPGA hardware resources. In previous work, a new and efficient PUF identification generator was presented for FPGA. The PUF identification generator is designed to fit in a single slice per response bit by using a 1-bit PUF identification generator cell formed as a hard-macro. In this work, we propose an ultra-compact PUF identification generator design. It is implemented on ten low-cost Xilinx Spartan-6 FPGA LX9 microboards. The resource utilization is only 2.23%, which, to the best of the authors' knowledge, is the most compact and robust FPGA-based PUF identification generator design reported to date. This PUF identification generator delivers a stable range of uniqueness of around 50% and good reliability between 85% and 100%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The matrix metalloproteinases (MMPs) are endopeptidases which break down the extracellular matrix and regulate cytokine and growth factor activity. Several MMPs have been implicated in the promotion of invasion and metastasis in a broad range of tumours including urothelial carcinoma. In this study, RNA from 132 normal bladder and urothelial carcinoma specimens was profiled for each of the 24 human MMPs, the four endogenous tissue inhibitors of MMPs (TIMPs) and several key growth factors and their receptors using quantitative real time RT-PCR. Laser capture microdissection (LCM) of RNA from 22 tumour and 11 normal frozen sections was performed allowing accurate RNA extraction from either stromal or epithelial compartments. This study confirms the over expression in bladder tumour tissue of well-documented MMPs and highlights a range of MMPs which have not previously been implicated in the development of urothelial cancer. In summary, MMP-2, MT1-MMP and the previously unreported MMP-28 were very highly expressed in tumour samples while MMPs 1, 7, 9, 11, 15, 19 and 23 were highly expressed. There was a significant positive correlation between transcript expression and tumour grade for MMPs 1, 2, 8, 10, 11, 12, 13, 14, 15 and 28 (P < 0.001). At the same confidence interval, TIMP-1 and TIMP-3 also correlated with increasing tumour grade. LCM revealed that most highly expressed MMPs are located primarily within the stromal compartment except MMP-13 which localised to the epithelial compartment. This work forms the basis for further functional studies, which will help to confirm the MMPs as potential diagnostic and therapeutic targets in early bladder cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How can we correlate neural activity in the human brain as it responds to words, with behavioral data expressed as answers to questions about these same words? In short, we want to find latent variables, that explain both the brain activity, as well as the behavioral responses. We show that this is an instance of the Coupled Matrix-Tensor Factorization (CMTF) problem. We propose Scoup-SMT, a novel, fast, and parallel algorithm that solves the CMTF problem and produces a sparse latent low-rank subspace of the data. In our experiments, we find that Scoup-SMT is 50-100 times faster than a state-of-the-art algorithm for CMTF, along with a 5 fold increase in sparsity. Moreover, we extend Scoup-SMT to handle missing data without degradation of performance. We apply Scoup-SMT to BrainQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. Scoup-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy. Finally, we demonstrate the generality of Scoup-SMT, by applying it on a Facebook dataset (users, friends, wall-postings); there, Scoup-SMT spots spammer-like anomalies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron-impact excitation data for He-like ions are of significant importance for diagnostic applications to both laboratory and astrophysical plasmas. Here we report on the first fully relativistic R -matrix calculations with radiation damping for the He-like ions Fe 24+ and Kr 34+ . Effective collision strengths for these two ions have been determined with and without damping over a wide temperature range for all transitions between the 49 levels through n = 5. We find that damping has a pronounced effect on the effective collision strengths for excitation to some of the low-lying levels, but its effect on excitation to the vast majority of levels is small. At the energy of a resonance peak, we also investigate the effect of radiation damping on the angular distribution of scattered electrons. Finally, we compare our results for Fe 24+ with an earlier intermediate coupling frame transformation R -matrix calculation with radiation damping by Whiteford et al ( J. Phys. B: At. Mol. Opt. Phys. 34 3179) and find good agreement, especially for excitation to the lower levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For applications to laboratory and astrophysical plasmas, there is a great need for accurate electron-impact excitation data between individual levels in the lower charge-state ions of iron. Recently, we have reported on the first intermediate-coupling R -matrix calculation of electron-impact excitation in Fe 4+ , in which the close-coupling expansion of the target included levels from both ground and excited configurations (Ballance et al 2007 J. Phys. B: At. Mol. Opt. Phys. [/0953-4075/40/23/f01] 40 F327 , 2008 Europhys. News 39 14). In this paper, we present the results of two large intermediate-coupling Dirac R -matrix calculations of electron-impact excitation of Fe 5+ . The results from the two calculations, which differ only in the configuration–interaction expansions of the target, are compared. These comparisons provide some indication of the accuracy of the calculations and the resulting data should be useful in modelling plasmas containing iron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe$^{2+}$ which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This is in contradiction to the finding of Bautista et al. [Ap.J.Lett, 718, L189, (2010)] who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current design plans for the International Thermonuclear\nExperimental Reactor ( ITER) call for tungsten to be employed for\ncertain plasma facing components in the divertor region. Thus, accurate\natomic collision data are needed for emission modelling of tungsten.\nElectron-impact excitation and radiative rates are of particular\nimportance for Ni-like W, since this ion emits some of the most intense\nspectral lines of all ionization stages. We report on a fully\nrelativistic 115-level R-matrix calculations of W46+, which includes the\neffects of radiation damping. Although radiation damping is very\nimportant in most highly ionized species, its effects are reduced in\nthis case because of the closed-shell Ni-like ground state. The rates\nfrom these relativistic atomic calculations will be employed for\ncollisional-radiative modelling of this ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a number of years, there has been a major effort to calculate electron-impact excitation data for every ion stage of iron embodied by the ongoing efforts of the IRON project by Hummer et al (1993 Astron. Astrophys. 279 298). Due to the complexity of the targets, calculations for the lower stages of ionization have been limited to either intermediate-coupling calculations within the ground configurations or LS -coupling calculations of the ground and excited configurations. However, accurate excitation data between individual levels within both the ground and excited configurations of the low charge-state ions are urgently required for applications to both astrophysical and laboratory plasmas. Here we report on the results of the first intermediate-coupling R -matrix calculation of electron-impact excitation for Fe 4+ for which the close-coupling (CC) expansion includes not only those levels of the 3d 4 ground configuration, but also the levels of the 3d 3 4s, 3d 3 4p, 3d 3 4d and 3d 2 4s 2 excited configurations. With 359 levels in the CC expansion and over 2400 scattering channels for many of the J Π partial waves, this represents the largest electron–ion scattering calculation to date and it was performed on massively parallel computers using a recently developed set of relativistic parallel R -matrix programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade an Auburn-Rollins-Strathclyde consortium has developed several suites of parallel R-matrix codes [1, 2, 3] that can meet the fundamental data needs required for the interpretation of astrophysical observation and/or plasma experiments. Traditionally our collisional work on light fusion-related atoms has been focused towards spectroscopy and impurity transport for magnetically confined fusion devices. Our approach has been to provide a comprehensive data set for the excitation/ionization for every ion stage of a particular element. As we progress towards a burning fusion plasma, there is a demand for the collisional processes involving tungsten, which has required a revitalization of the relativistic R-matrix approach. The implementation of these codes on massively parallel supercomputers has facilitated the progression to models involving thousands of levels in the close-coupling expansion required by the open d and f sub-shell systems of mid Z tungsten. This work also complements the electron-impact excitation of Fe-Peak elements required by astrophysics, in particular the near neutral species, which offer similar atomic structure challenges. Although electron-impact excitation work is our primary focus in terms of fusion application, the single photon photoionisation codes are also being developed in tandem, and benefit greatly from this ongoing work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed an R-matrix with pseudo-states (RMPS) calculation of electron-impact excitation in C2+.Collision strengths and effective collision strengths were determined for excitation between the lowest 24 terms, including all those arising from the 2s3l and 2s4l configurations. In the RMPS calculation, 238 terms (90 spectroscopic and 148 pseudo-state) were employed in the close-coupling (CC) expansion of the target. In order to investigate the significance of coupling to the target continuum and highly excited bound states, we compare the RMPS results with those from an R-matrix calculation that incorporated all 238 terms in the configuration- interaction expansion, but only the lowest 44 spectroscopic terms in the CC expansion. We also compare our effective collision strengths with those from an earlier 12-state R-matrix calculation (Berrington et al 1989 J. Phys. B: At.Mol. Opt. Phys. 22 665). The RMPS calculation was extremely large, involving (N +1)-electron Hamiltonian matrices of dimension up to 36 085, and required the use of our recently completed suite of parallel R-matrix programs. The full set of effective collision strengths fromourRMPS calculation is available at theOakRidgeNationalLaboratoryControlledFusion Atomic Data Center web site. 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio cross section calculations for vibronic excitation using the R -matrix approach have been performed on the N 2 + molecular ion complex. A three-state close-coupling expansion is used where the electronic target states; X 2 g + , A 2 u and B 2 u + of the molecular cation are represented by a valence configuration-interaction approximation. A non-adiabatic approximation is invoked to study vibronic excitation for the first three negative bands, (0,0), (1,0) and (2,0) of the X-B transition (B 2 u + v ´ X 2 g + v ´´ ) of N 2 + . Fixed-nuclei and non-adiabatic cross section results are compared with the available experimental data for the (0,0) band and the breakdown of the adiabatic fixed-nuclei approximation is clearly evident for the vibronic excitation of the (1,0) and (2,0) bands in this molecular ion complex.