978 resultados para Gas Chromatography coupled with Nitrogen-Phosphorus Detector


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Dwarf stands of the mangrove Rhizophora mangle L. are extensive in the Caribbean. We fertilized dwarf trees in Almirante Bay, Bocas del Toro Province, north-eastern Panama with nitrogen (N) and phosphorus (P) to determine (1) if growth limitations are due to nutrient deficiency; and (2) what morphological and/or physiological factors underlie nutrient limitations to growth. 2. Shoot growth was 10-fold when fertilized with P and twofold with N fertilization, indicating that stunted growth of these mangroves is partially due to nutrient deficiency. 3. Growth enhancements caused by N or P enrichment could not be attributed to increases in photosynthesis on a leaf area basis, although photosynthetic nutrient-use efficiency was improved. The most dramatic effect was on stem hydraulic conductance, which was increased sixfold by P and 2.5-fold with N enrichment. Fertilization with P enhanced leaf and stem P concentrations and reduced C : N ratio, but did not alter leaf damage by herbivores. 4. Our findings indicate that addition of N and P significantly alter tree growth and internal nutrient dynamics of mangroves at Bocas del Toro, but also that the magnitude, pattern and mechanisms of change will be differentially affected by each nutrient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional Periodic Acid Schiff has been extensively used, coupled with immunohistochemistry for epithelia or mesenchymal cells, to highlight renal tubular basement membrane (TBM). We recently tried to perform such technique in a 5/6 nephrectomy model of progressive renal fibrosis to demonstrate TBM disruption as an evidence for epithelial-mesenchymal transdifferentiation. Despite excellent basement membrane staining with traditional fuchsin-Periodic Acid Schiff, the interface between epithelial and mesenchymal cells was frequently blurred when revealed with 3`3 diaminobenzidine tetrachloride-peroxidase. Also, it was inadequate when revealed with alkaline phosphatase-fast red. We devised a triple staining method with Periodic Acid-Thionin Schiff to highlight basement membrane in blue, after double immunostaining for epithelium and mesenchymal cells. Blue basement membrane rendered a brisk contrast and highlighted boundaries between epithelial-mesenchymal interfaces. This method was easy to perform and useful to demonstrate the TBM, yield a clear demonstration of the very focal TBM disruption found in this model of progressive renal fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

delta(15)N signatures of fossil peat were used to interpret past ecosystem processes on tectonically active subantarctic Macquarie Island. By comparing past vegetation reconstructed from the fossil record with present-day vegetation analogues, our evidence strongly suggests that changes in the delta(15)N signatures of fossil peat at this location reflect mainly past changes in the proportion of plant nitrogen derived from animal sources. Associated with uplift above sea level over the past 8,500 years, fossil records in two peat deposits on the island chronicle a change from coastal vegetation with fur and elephant seal disturbance to the existing inland herbfield. Coupled with this change are synchronous changes in the delta(15)N signatures of peat layers. At two sites N-15-enriched peat delta(15)N signatures of up to +17parts per thousand were associated with a high abundance of pollen of the nitrophile Callitriche antarctica (Callitrichaceae). At one site fossil seal hair was also associated with enriched peat delta(15)N. Less N-15 enriched delta(15)N signatures (e.g. -1.9parts per thousand to +3.9parts per thousand) were measured in peat layers which lacked animal associated C. antarctica and Acaena spp. Interpretation of a third peat profile indicates continual occupation of a ridge site by burrowing petrels for most of the Holocene. We suggest that N-15 signatures of fossil peat remained relatively stable with time once deposited, providing a significant new tool for interpreting the palaeoecology.