981 resultados para GFA-FTIR
Resumo:
Co(II), Ni(II) and Cu(II) complexes of dimethylglyoxime and N,N-ethylenebis(7-methylsalicylideneamine) have been synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. The hybrid materials obtained have been characterized by elemental analysis, SEM, XRD, surface area, pore volume, magnetic moment, FTIR, UV-Vis and EPR techniques. Analysis of data indicates the formation of complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activities for hydrogen peroxide decomposition and oxidation of benzyl alcohol and ethylbenzene of zeolite complexes are reported. Zeolite Cu(II) complexes were found to be more active than the corresponding Co(II) and Ni(II) complexes for oxidation reactions. The catalytic properties of the complexes are influenced by their geometry and by the steric environment of the active sites. Zeolite complexes are stable enough to be reused and are suitable to be utilized as partial oxidation catalysts.
Resumo:
Copper(II) complexes of two biologically important ligands, viz., embelin (2,5-dihydroxy-3-undecyl-2,5-cyclohexadien 1,4-dione) and 2-aminobenzimidazole were entrapped in the cages of zeolite Y by the flexible ligand method. The capability of these compounds in catalyzing the reduction of oxygen (industrially known as deoxo reaction) was explored and the results indicate an enhancement of the catalytic properties from that of the simple copper ion exchanged zeolite. These point to the ability of the ligands in enhancing the oxygen binding capability of the metal ion. Elemental analyses, Fourier transform infrared (FTIR), diffuse reflectance and EPR spectral studies, magnetic susceptibility measurements, TG, surface area analyses and powder X-ray diffraction studies were used in understanding the presence, composition and structure of the complexes inside the cages. The study also reveals the increased thermal and mechanical stability of the complexes as a result of encapsulation.
Resumo:
Poor cold flow properties of vegetable oils are a major problem preventing the usage of many abundantly available vegetable oils as base stocks for industrial lubricants. The major objective of this research is to improve the cold flow properties of vegetable oils by various techniques like additive addition and different chemical modification processes. Conventional procedure for determining pour point is ASTM D97 method. ASTM D97 method is time consuming and reproducibility of pour point temperatures is poor between laboratories. Differential Scanning Calorimetry (DSC) is a fast, accurate and reproducible method to analyze the thermal activities during cooling/heating of oil. In this work coconut oil has been chosen as representative vegetable oil for the analysis and improvement cold flow properties since it is abundantly available in the tropics and has a very high pour point of 24 °C. DSC is used for the analysis of unmodified and modified vegetable oil. The modified oils (with acceptable pour points) were then subjected to different tests for the valuation of important lubricant properties such as viscometric, tribological (friction and wear properties), oxidative and corrosion properties.A commercial polymethacrylate based PPD was added in different percentages and the pour points were determined in each case. Styrenated phenol(SP) was added in different concentration to coconut oil and each solution was subjected to ASTM D97 test and analysis by DSC. Refined coconut oil and other oils like castor oil, sunflower oil and keranja oil were mixed in different proportions and interesterification procedure was carried out. Interesterification of coconut oil with other vegetable oils was not found to be effective in lowering the pour point of coconut oil as the reduction attained was only to the extent of 2 to 3 °C.Chemical modification by acid catalysed condensation reaction with coconut oil castor oil mixture resulted in significant reduction of pour point (from 24 ºC to -3 ºC). Instead of using triacylglycerols, when their fatty acid derivatives (lauric acid- the major fatty acid content of coconut oil and oleic acid- the major fatty acid constituents of monoand poly- unsaturated vegetable oils like olive oil, sunflower oil etc.) were used for the synthesis , the pour point could be brought down to -42 ºC. FTIR and NMR spectroscopy confirmed the ester structure of the product which is fundamental to the biodegradability of vegetable oils. The tribological performance of the synthesised product with a suitable AW/EP additive was comparable to the commercial SAE20W30 oil. The viscometric properties (viscosity and viscosity index) were also (with out additives) comparable to commercial lubricants. The TGA experiment confirmed the better oxidative performance of the product compared to vegetable oils. The sample passed corrosion test as per ASTM D130 method.
Resumo:
In situ polymerization of aniline is done inside the pillared clay matrix. The nonswellable pillared clay confined matrix allows efficient polymerization that leads to nanofibrous morphology. As a result high polymer order and crystallinity is attained and is evident from XRD patterns. The strong interaction between the clay layers and polyaniline (PANI) is understood from FTIR and DRS spectra. Additionally these analytical results suggest that the prepared PANI is in the doped state. The PANI/pillared clay nanocomposite formation gives additional thermal stability to the polymer backbone and is clear from the DTG curves.
Resumo:
The thermal transport properties, thermal diffusivity, thermal conductivity and specific heat capacity of Dicalcium Lead Propionate (DLP) crystal have been measured following a modified photopyroelectric thermal wave method. The measurements have been carried out with thermal waves propagating along the three principal symmetry directions, so as to bring out the anisotropy in these parameters. The variations of the above parameters through two prominent phase transition temperatures of this crystal have also been measured to understand the variation of these parameters as it undergoes ferroelectric phase transitions. In addition, complete thermal analysis and FTIR measurements have been done on the crystal to bring out the correlation of these results with the corresponding thermal transport properties. All these results are presented and discussed. The data presented in this paper form a comprehensive set of results on the thermal transport properties of this crystal.
Resumo:
The heterogeneous photocatalytic degradation of methylorange over TiO2 is studied and is found to be cost effective. Effect of Zirconium metal incorporation over titania system is investigated. Photocatalytic degradation of methylorange using solar radiation is found to be highly economical when compared with the processes using artificial UV radiation, which require substantial electrical power input. The characterization of titania as well as modified zirconium metal doped titania systems are done using XRD, FTIR and EDAX measurements. The catalytic activities of different systems are also compared and is tried to correlate with the crystallite size and presence of dopant metal.