993 resultados para Functional coating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intercellular adhesion molecule-1 (ICAM-1) is an important factor in the progression of inflammatory responses in vivo. To develop a new anti-inflammatory drug to block the biological activity of ICAM-1, we produced a monoclonal antibody (Ka=4.19×10−8 M) against human ICAM-1. The anti-ICAM-1 single-chain variable antibody fragment (scFv) was expressed at a high level as inclusion bodies in Escherichia coli. We refolded the scFv (Ka=2.35×10−7 M) by ion-exchange chromatography, dialysis, and dilution. The results showed that column chromatography refolding by high-performance Q Sepharose had remarkable advantages over conventional dilution and dialysis methods. Furthermore, the anti-ICAM-1 scFv yield of about 60 mg/L was higher with this method. The purity of the final product was greater than 90%, as shown by denaturing gel electrophoresis. Enzyme-linked immunosorbent assay, cell culture, and animal experiments were used to assess the immunological properties and biological activities of the renatured scFv.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25+/highCD127Ø/lowFoxP3+, and effector T cells were defined as CD25+CD127+FoxP3Ø. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4+TREG and CD28+TREG cells and an increased frequency of CD40L+TREG cells. There was a decrease in the TREG/effector-T ratio for GITR+, HLA-DR+, OX40+, and CD45RO+ cells, and an increased ratio of TREG/effector-T CD40L+ cells in patients with SLE. In addition, CD40L+TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to determine whether psychological factors affect health-related quality of life (HRQL) and recovery of knee function in total knee replacement (TKR) patients. A total of 119 TKR patients (male: 38; female: 81) completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI), State Trait Anxiety Inventory (STAI), Eysenck Personality Questionnaire-revised (EPQR-S), Knee Society Score (KSS), and HRQL (SF-36). At 1 and 6 months after surgery, anxiety, depression, and KSS scores in TKR patients were significantly better compared with those preoperatively (P<0.05). SF-36 scores at the sixth month after surgery were significantly improved compared with preoperative scores (P<0.001). Preoperative Physical Component Summary Scale (PCS) and Mental Component Summary Scale (MCS) scores were negatively associated with extraversion (E score) (B=-0.986 and -0.967, respectively, both P<0.05). Postoperative PCS and State Anxiety Inventory (SAI) scores were negatively associated with neuroticism (N score; B=-0.137 and -0.991, respectively, both P<0.05). Postoperative MCS, SAI, Trait Anxiety Inventory (TAI), and BAI scores were also negatively associated with the N score (B=-0.367, -0.107, -0.281, and -0.851, respectively, all P<0.05). The KSS function score at the sixth month after surgery was negatively associated with TAI and N scores (B=-0.315 and -0.532, respectively, both P<0.05), but positively associated with the E score (B=0.215, P<0.05). The postoperative KSS joint score was positively associated with postoperative PCS (B=0.356, P<0.05). In conclusion, for TKR patients, the scores used for evaluating recovery of knee function and HRQL after 6 months are inversely associated with the presence of negative emotions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defatted Brazil nut kernel flour, a rich source of high quality proteins, is presently being utilized in the formulation of animal feeds. One of the possible ways to improve its utilization for human consumption is through improvement in its functional properties. In the present study, changes in some of the functional properties of Brazil nut kernel globulin were evaluated after acetylation at 58.6, 66.2 and 75.3% levels. The solubility of acetylated globulin was improved above pH 6.0 but was reduced in the pH range of 3.0-4.0. Water and oil absorption capacity, as well as the viscosity increased with increase in the level of acetylation. Level of modification also influenced the emulsifying capacity: decreased at pH 3.0, but increased at pH 7.0 and 9.0. Highest emulsion activity (approximately 62.2%) was observed at pH 3.0 followed by pH 9.0 and pH 7.0 and least (about 11.8%) at pH 5.0. Emulsion stability also followed similar behavior as that of emulsion activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monitoring and control of hydrogen sulfide (H2S) level is of great interest for a wide range of application areas including food quality control, defense and antiterrorist applications and air quality monitoring e.g. in mines. H2S is a very poisonous and flammable gas. Exposure to low concentrations of H2S can result in eye irritation, a sore throat and cough, shortness of breath, and fluid retention in the lungs. These symptoms usually disappear in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Higher concentrations of 700 - 800 ppm tend to be fatal. H2S has a characteristic smell of rotten egg. However, because of temporary paralysis of olfactory nerves, the smelling capability at concentrations higher than 100 ppm is severely compromised. In addition, volatile H2S is one of the main products during the spoilage of poultry meat in anaerobic conditions. Currently, no commercial H2S sensor is available which can operate under anaerobic conditions and can be easily integrated in the food packaging. This thesis presents a step-wise progress in the development of printed H2S gas sensors. Efforts were made in the formulation, characterization and optimization of functional printable inks and coating pastes based on composites of a polymer and a metal salt as well as a composite of a metal salt and an organic acid. Different processing techniques including inkjet printing, flexographic printing, screen printing and spray coating were utilized in the fabrication of H2S sensors. The dispersions were characterized by measuring turbidity, surface tension, viscosity and particle size. The sensing films were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and an electrical multimeter. Thin and thick printed or coated films were developed for gas sensing applications with the aim of monitoring the H2S concentrations in real life applications. Initially, a H2S gas sensor based on a composite of polyaniline and metal salt was developed. Both aqueous and solvent-based dispersions were developed and characterized. These dispersions were then utilized in the fabrication of roll-to-roll printed H2S gas sensors. However, the humidity background, long term instability and comparatively lower detection limit made these sensors less favourable for real practical applications. To overcome these problems, copper acetate based sensors were developed for H2S gas sensing. Stable inks with excellent printability were developed by tuning the surface tension, viscosity and particle size. This enabled the formation of inkjet-printed high quality copper acetate films with excellent sensitivity towards H2S. Furthermore, these sensors showed negligible humidity effects and improved selectivity, response time, lower limit of detection and coefficient of variation. The lower limit of detection of copper acetate based sensors was further improved to sub-ppm level by incorporation of catalytic gold nano-particles and subsequent plasma treatment of the sensing film. These sensors were further integrated in an inexpensive wirelessly readable RLC-circuit (where R is resistor, L is inductor and C is capacitor). The performance of these sensors towards biogenic H2S produced during the spoilage of poultry meat in the modified atmosphere package was also demonstrated in this thesis. This serves as a proof of concept that these sensors can be utilized in real life applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioflavors and oligosaccharides are two classes of substances that may be produced biotechnologically through microbial bioprocesses. These compounds have attracted the interest of pharmaceutical and food industries not only due to their technological properties (sweetening/fiber or flavoring, respectively), but also as a consequence of other functional properties such as, for example, health promoting benefits. The use of agro-industrial residues as substrates in biotechnological processes seems to be a valuable alternative in helping to overcome the high manufacturing costs of industrial fermentations. This manuscript reviews the most important advances in biotechnological production of bioflavors and oligosaccharides. The use of some agro-industrial residues in such processes is also cited and discussed, showing that this is a rising trend in biotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effects of thermoplastic extrusion process parameters (raw material moisture content and temperature) and the addition of functional ingredients (lycopene and soy protein) on quality characteristics of a base-formulation for extruded corn snacks were studied, with the objective of developing an easy-to-eat functional product. A single-screw Labor PQ 30 model Inbramaq extruder was used for extrusion and a central composite rotational design (CCRD) was followed. The independent variables were: i) percentage of soy protein isolate (0-30%); ii) percentage of lycopene preparation (0-0.1%); iii) raw material moisture content (20-30%); and iv) 5th zone temperature (100-150 °C). The expansion index reached maximum values with the lowest raw material moisture content (20%) and intermediate temperatures (approximately 125 °C). Instrumental hardness was higher with high moisture and low temperature; however, increasing the percentage of soy protein was beneficial for the texture of the product, reducing hardness. The red color intensity increased with the increase in lycopene content and moisture, and with the reduction of temperature. Sensory acceptance tests were carried out for two products, with maximum percentages of the functional ingredients, 20% moisture and temperatures of 125 and 137 °C, with greater acceptance for the product extruded at 125 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four varieties of an Andean indigenous crop, quinoa (Chenopodium quinoa Willd.), were evaluated as a source of dietary fiber, phenolic compounds and antioxidant activity. The crops were processed by extrusion-cooking and the final products were analyzed to determine the dietary fiber, total polyphenols, radical scavenging activity, and in vitro digestibility of starch and protein. There were no significant differences in the contents of total dietary fiber between varieties of quinoa. In all cases, the contents of total and insoluble dietary fiber decreased during the extrusion process. At the same time, the content of soluble dietary fiber increased. The content of total phenolic compounds and the radical scavenging activity increased during the extrusion process in the case of all 4 varieties. There were significant differences between the varieties and the content of total polyphenols. The in vitro protein digestibility of quinoa varieties was between 76.3 and 80.5% and the in vitro starch digestibility was between 65.1 and 68.7%. Our study demonstrates that quinoa can be considered a good source of dietary fiber, polyphenols and other antioxidant compounds and that extrusion improves the nutritional value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to evaluate spices and industrial ingredients for the development of functional foods with high phenolic contents and antioxidant capacity. Basil, bay, chives, onion, oregano, parsley, rosemary, turmeric and powdered industrial ingredients (β-carotene, green tea extract, lutein, lycopene and olive extract) had their in vitro antioxidant capacity evaluated by means of the Folin-Ciocalteu reducing capacity and DPPH scavenging ability. Flavonoids identification and quantification were performed by High Performance Liquid Chromatography (HPLC). The results showed that spices presented a large variation in flavonoids content and in vitro antioxidant capacity, according to kind, brand and batches. Oregano had the highest antioxidant capacity and parsley had the highest flavonoid content. The industrial ingredient with the highest antioxidant capacity was green tea extract, which presented a high content of epigalocatechin gallate. Olive extract also showed a high antioxidant activity and it was a good source of chlorogenic acid. This study suggests that oregano, parsley, olive and green tea extract have an excellent potential for the development of functional foods rich in flavonoids as antioxidant, as long as the variability between batches/brands is controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to study the functional properties and proximate composition of three different flours prepared from cactus pear cladodes. Immature cactus pear cladodes were dried at 60 °C, 70 °C and 80 °C. The flours were analyzed for chemical composition, amino acid profile, fatty acid composition, functional properties and color. The analyses showed no significant differences in crude protein, total lipid, crude fiber and total ash content in the flours, possibly due to the drying temperature effect. Nevertheless, during the drying at 80 °C, a reduction of the water holding capacity (55%) was observed, along with a reduction of the green color intensity (34%) - characteristic of cactus pear. The heating produced larger concentrations of tyrosine, proline, aspartic acid, and glutamic acid. In the lipids of the flours, the most abundant fatty acids were palmitic acid (C16:0), linoleic acid (C18:2n6), linolenic acid (C18:3n3), and oleic acid (C18:1n9). The cladodes flours prepared at 60 °C presented a higher quality regarding their nutritional and functional properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of fiber from sugar cane bagasse, corn starch, and whey protein concentrate were extruded. A single screw extruder, equipped with a screw at a constant compression ratio of 1:1 and a die diameter of 3 mm, was used. The best processing conditions were determined according to a central composite rotatable design (α = 1.41) with 5 central points, which gives a total of 13 tests. During the extrusion process the content of insoluble fiber decreased and that of soluble fiber increased. An increase in the contents of fiber and in the barrel temperature resulted in a decrease in the expansion index values and an increase in the water absorption index values; whereas in blends with intermediate fiber contents the effects in these parameters were found to be the opposite. High fiber contents increased penetration force but decreased luminosity, water solubility index values and the adhesive force in gels. The extrusion process improved the functional properties of sugarcane fiber bagasse enabling its addition to diverse alimentary systems.