999 resultados para Functional PCA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study employs density functional theory (DFT) calculations to examine the mechanism by which acetaldehyde is formed on platinum in a typical direct ethanol fuel cell (DEFC). A pathway is found involving the formation of a strongly hydrogen-bonded complex between adsorbed ethanol and the surface hydroxyl (OH) species, followed by the facile alpha-dehydrogenation of ethanol, with spontaneous weakening of the hydrogen bond in favor of adsorbed acetaldehyde and water. This mechanism is found to be comparably viable on both the close-packed surface and the monatomic steps. Comparison of further reactions on these two sites strongly indicates that the steps act as net removers of acetaldehyde from the product stream, while the flat surface acts as a net producer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PF4 has previously been shown to have potent inhibitory effects on myoactivity of somatic muscle strips from the nematode, Ascaris suum. This study examined the bioactivity and metabolic stability of position 2- and position 5-modified analogues of PF4. Although the analogues [Leu(5)] PF4, [Ala(2)]PF4, [Gly(2)]PF4, [Ala(2),Leu(5)]PF4, and [Gly(2),Leu(5)]PF4 all had qualitatively similar inhibitory effects on A. suum somatic muscle strips, their effects were quantitatively distinguishable and had the order of potency: PF4 = [Leu(5)] PF4 >> [Ala(2)]PF4 = [Ala(2),Leu(5)] PF4 >> [Gly(2)] PF4 = [Gly(2),Leu(5)] PF4. Leu(5) for Ile(5) substitutions in PF4 did not alter the activity of this peptide; however, Gly(2)/Ala(2) for Pro(2) substitutions reduced, but did not abolish, peptide activity. Peptide stability studies revealed that [Gly(2)]PF4(2-7) and -(3-7) and [Ala(2)]PF4(2-7), -(3-7), and -(4-7) fragments were generated following exposure to A. suum somatic muscle strips. However, the parent peptide (PF4) was not metabolized and appeared to be resistant to the sequential cleavages of native aminopeptidases. Observed analogue metabolism appeared to be due to the activity of released aminopeptidases as identical fragments were generated by incubation in medium that had been exposed to somatic muscle strips and from which the strips had been removed prior to peptide addition. It was found that the muscle stretching and bath mixing characteristics of the tension assay led to more effective release of soluble enzymes from muscle strips and thus greater peptide degradation. These studies reveal that Pro(2) in PF4 is not essential for the biological activity of this peptide; however, it does render the peptide resistant to the actions of native nematode aminopeptidases. Copyright (C) 1996 Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu?Pro at position 2 and Phe?Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20µM and 150µM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His?Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5µM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His?Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40µm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-range strain fields associated with dislocation cores at an oxide interface are shown to be sufficient enough to create significant variations in the chemical composition around the core (Cottrell atmospheres). Such stress-assisted diffusion of cations towards the cores is proposed to significantly impact the properties of nanoscale functional devices. The figure shows a Z-contrast image of a single dislocation core at an oxide interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WbaP catalyzes the transfer of galactose-1-phosphate onto undecaprenyl phosphate (Und-P). The enzyme belongs to a large family of bacterial membrane proteins required for initiation of the synthesis of O antigen lipopolysaccharide and polysaccharide capsules. Previous work in our laboratory demonstrated that the last transmembrane helix and C-terminal tail region of WbaP (WbaP(CT)) are sufficient for enzymatic activity. Here, we demonstrate the cytoplasmic location of the WbaP C-terminal tail and show that WbaPCT domain N-terminally fused to thioredoxin (TrxA-WbaP(CT)) exhibits improved protein folding and enhanced transferase activity. Alanine replacement of highly conserved charged or polar amino acids identified seven critical residues for enzyme activity in vivo and in vitro. Four of these residues are located in regions predicted to be a-helical. These regions and their secondary structure predictions are conserved in distinct WbaP family members, suggesting they may contribute to form a conserved catalytic center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.