996 resultados para Fox-Wright Function
Resumo:
Major histocompatibility complex (MHC) molecules are of crucial importance for the immune system to recognize and defend the body against external attacks. Foreign antigens are presented by specialized cells, called antigen presenting cells, to T lymphocytes in the context of MHC molecules, thereby inducing T cell activation. In addition, MHC molecules are essential for Natural Killer (NK) cell biology, playing a role in NK cell education and activation. Recently, the NOD-like receptor (NLR) family member NLRC5 (NLR caspase recruitment domain containing protein 5) was found to act as transcriptional regulator of MHC class I, in particular in T and NK cells. Its role in MHC class I expression is however minor in dendritic cells (DCs). This raised the question of whether inflammatory conditions, which augment the levels of NLRC5 in DCs, could increase its contribution to MHC class I expression. Our work shows that MHC class I transcript and intracellular levels depend on NLRC5, while its role in MHC class I surface expression is instead negligible. We describe however a general salvage mechanism that enables cells with low intracellular MHC class I levels to nevertheless maintain relatively high MHC class I on the cell surface. In addition, we lack a thorough understanding of NLRC5 target gene specificity and mechanism of action. Our work delineates the unique consensus sequence in MHC class I promoters required for NLRC5 recruitment and pinpoints conserved features conferring its specificity. Furthermore, through genome-wide analyses, we confirm that NLRC5 regulates classical MHC class I genes and identify novel target genes all encoding non-classical MHC class I molecules exerting an array of functions in immunity and tolerance. We finally asked why a dedicated factor co-regulates MHC class I expression specifically in T and NK lymphocytes. We show that deregulated NLRC5 expression affects the education of NK cells and alters the crosstalk between T and NK cells, leading to NK cell-mediated killing of T lymphocytes. Altogether this thesis work brings insights into molecular and physiological aspects of NLRC5 function, which might help understand certain aspects of immune responses and disorders. -- Les molécules du complexe majeur d'histocompatibilité (CMH) sont essentielles au système immunitaire pour l'initiation de la réponse immunitaire. En effet, l'activation des lymphocytes T nécessite la reconnaissance d'un antigène étranger présenté par les cellules présentatrices d'antigènes sur une molécule du CMH. Les molécules du CMH ont également un rôle fondamental pour la fonction des cellules Natural Killer (NK) puisqu'elles sont nécessaires à leur processus d'éducation et d'activation. Récemment, NLRC5 (NLR caspase recruitment domain containing protein 5), un membre de la famille des récepteurs de type NOD (NLRs), a été décrit comme un facteur de transactivation de l'expression des gènes du CMH de classe I. A l'état basai, cette fonction transcriptionnelle est essentielle dans les lymphocytes T et NK, alors que ce rôle reste mineur pour l'expression des molécules du CMH de classe I dans les cellules dendritiques (DCs). Dans des conditions inflammatoires, l'expression de NLRC5 augmente dans les DCs. Notre travail démontre que, dans ces conditions, les transcrits et les niveaux intracellulaires des molécules du CMH de classe I augmentent aussi d'une façon dépendante de NLRC5. A contrario, le rôle de NLRC5 sur les niveaux de molécules de surface reste minoritaire. Cette observation nous a conduits à l'identification d'un mécanisme général de compensation qui permet aux cellules de maintenir des niveaux relativement élevés de molécules de CMH de class I à leur surface malgré de faibles niveaux intracellulaires. De plus, il semblait nécessaire de s'orienter vers une approche plus globale afin de déterminer l'étendue de la fonction transcriptionnelle de NLRC5. Par une approche du génome entier, nous avons pu décrire une séquence consensus conservée présente dans les promoteurs des gènes du CMH de classe I, sur laquelle NLRC5 est spécifiquement recruté. Nous avons pu également identifier de nouveaux gènes cibles codant pour des molécules de CMH de classe I non classiques impliqués dans l'immunité et la tolérance. Finalement, nous nous sommes demandé quel est l'intérêt d'avoir un facteur transcriptionnel, en l'occurrence NLRC5, qui orchestre l'expression du CMH de classe I dans les lymphocytes T et NK. Nous montrons que la dérégulation de l'expression de NLRC5 affecte l'éducation des cellules NK et conduit à la mort cellulaire des lymphocytes T médiée par les cellules NK. Dans l'ensemble ce travail de thèse contribue à la caractérisation du rôle de NLRC5, tant au niveau moléculaire que physiologique, ce qui présente un intérêt dans le cadre de la compréhension de certains aspects physiopathologique de la réponse immunitaire.
Resumo:
Thymic stromal lymphopoietin (TSLP) is a mucosal tissue-associated cytokine that has been widely studied in the context of T helper type 2 (Th2)-driven inflammatory disorders. Although TSLP is also produced upon viral infection in vitro, the role of TSLP in antiviral immunity is unknown. In this study we report a novel role for TSLP in promoting viral clearance and virus-specific CD8+ T-cell responses during influenza A infection. Comparing the immune responses of wild-type and TSLP receptor (TSLPR)-deficient mice, we show that TSLP was required for the expansion and activation of virus-specific effector CD8+ T cells in the lung, but not the lymph node. The mechanism involved TSLPR signaling on newly recruited CD11b+ inflammatory dendritic cells (DCs) that acted to enhance interleukin-15 production and expression of the costimulatory molecule CD70. Taken together, these data highlight the pleiotropic activities of TSLP and provide evidence for its beneficial role in antiviral immunity.
Resumo:
Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross-links. It was reported earlier that FANCD2 co-localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid-S to G2 phase within sites containing single-stranded DNA (ssDNA) intermediates, or at sites of DNA damage, such as those created by restriction endonucleases and laser irradiation. Purified FANCD2, a ring-like particle by electron microscopy, preferentially bound ssDNA over various DNA substrates. Inhibition of MRE11 nuclease activity by Mirin decreased the number of FANCD2 foci formed in vivo. We propose that FANCD2 binds to ssDNA arising from MRE11-processed DNA double-strand breaks. Our data establish MRN as a crucial regulator of FANCD2 stability and function in the DNA damage response.
Resumo:
INTRODUCTION: A significant proportion of prematurely born children encounter behavioral difficulties, such as attention deficit or hyperactivity, which could be due to executive function disorders. AIMS: To examine whether the standard neurodevelopmental assessment offered to premature children in Switzerland recognizes executive function disorders. METHODS: The study population consisted of 49 children born before 29 weeks of gestation who were examined between 5 and 6 years of age with a standard assessment, with additional items to assess executive functioning. Children with severe neurodevelopmental impairment were excluded (mental retardation, cerebral palsy, autism). Standard assessment consisted in the Kaufman Assessment Battery for Children (K-ABC), which comprises three subscales: sequential processes (analysis of sequential information), simultaneous processes (global analysis of visual information), and composite mental processes (CMP) (result of the other two scales), as well as a behavioral evaluation using the standardized Strengths and Difficulties Questionnaire (SDQ). Executive functioning was assessed with tasks evaluating visual attention, divided attention, and digit memory as well as with a specialized questionnaire, the Behavior Rating Index of Executive Functions (BRIEF), which evaluates several aspects of executive function (regulation, attention, flexibility, working memory, etc). RESULTS: Children were divided according to their results on the three K-ABC scales (< or>85), and the different neuropsychological tasks assessing executive function were compared between the groups. The CMP did not differentiate children with executive difficulties, whereas a score<85 on the sequential processes was significantly associated with worse visual and divided attention. There was a strong correlation between the SDQ and the BRIEF questionnaires. For both questionnaires, children receiving psychotherapy had significantly higher results. Children who presented behavioral problems assessed with the SDQ presented significantly higher scores on the BRIEF. CONCLUSION: A detailed analysis of the standard neurodevelopmental assessment allows the identification of executive function disorders in premature children. Children who performed below 85 on the sequential processes of the K-ABC had significantly more attentional difficulties on the neuropsychological tasks and therefore have to be recognized and carefully followed. Emotional regulation had a strong correlation with behavioral difficulties, which were suitably assessed with the SDQ, recognized by the families, and treated.
Resumo:
Progressive pseudorheumatoid dysplasia (PPRD) is a genetic, non-inflammatory arthropathy caused by recessive loss of function mutations in WISP3 (Wnt1-inducible signaling pathway protein 3; MIM 603400), encoding for a signaling protein. The disease is clinically silent at birth and in infancy. It manifests between the age of 3 and 6 years with joint pain and progressive joint stiffness. Affected children are referred to pediatric rheumatologists and orthopedic surgeons; however, signs of inflammation are absent and anti-inflammatory treatment is of little help. Bony enlargement at the interphalangeal joints progresses leading to camptodactyly. Spine involvement develops in late childhood and adolescence leading to short trunk with thoracolumbar kyphosis. Adult height is usually below the 3rd percentile. Radiographic signs are relatively mild. Platyspondyly develops in late childhood and can be the first clue to the diagnosis. Enlargement of the phalangeal metaphyses develops subtly and is usually recognizable by 10 years. The femoral heads are large and the acetabulum forms a distinct "lip" overriding the femoral head. There is a progressive narrowing of all articular spaces as articular cartilage is lost. Medical management of PPRD remains symptomatic and relies on pain medication. Hip joint replacement surgery in early adulthood is effective in reducing pain and maintaining mobility and can be recommended. Subsequent knee joint replacement is a further option. Mutation analysis of WISP3 allowed the confirmation of the diagnosis in 63 out of 64 typical cases in our series. Intronic mutations in WISP3 leading to splicing aberrations can be detected only in cDNA from fibroblasts and therefore a skin biopsy is indicated when genomic analysis fails to reveal mutations in individuals with otherwise typical signs and symptoms. In spite of the first symptoms appearing in early childhood, the diagnosis of PPRD is most often made only in the second decade and affected children often receive unnecessary anti-inflammatory and immunosuppressive treatments. Increasing awareness of PPRD appears to be essential to allow for a timely diagnosis. © 2012 Wiley Periodicals, Inc.
Resumo:
RPE65 is a retinoid isomerase required for the production of 11-cis-retinal, the chromophore of both cone and rod visual pigments. We recently established an R91W knock-in mouse strain as homologous animal model for patients afflicted by this mutation in RPE65. These mice have impaired vision and can only synthesize minute amounts of 11-cis-retinal. Here, we investigated the consequences of this chromophore insufficiency on cone function and pathophysiology. We found that the R91W mutation caused cone opsin mislocalization and progressive geographic cone atrophy. Remnant visual function was mostly mediated by rods. Ablation of rod opsin corrected the localization of cone opsin and improved cone retinal function. Thus, our analyses indicate that under conditions of limited chromophore supply rods and cones compete for 11-cis-retinal that derives from regeneration pathway(s) which are reliant on RPE65. Due to their higher number and the instability of cone opsin, rods are privileged under this condition while cones suffer chromophore deficiency and degenerate. These findings reinforce the notion that in patients any effective gene therapy with RPE65 needs to target the cone-rich macula directly to locally restore the cones' chromophore supply outside the reach of rods.
Resumo:
The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.