983 resultados para Forkhead Transcription Factors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

La sepsis es un evento inflamatorio generalizado del organismo inducido por un daño causado generalmente por un agente infeccioso. El patógeno más frecuentemente asociado con esta entidad es el Staphylococcus aureus, responsable de la inducción de apoptosis en células endoteliales debida a la producción de ceramida. Se ha descrito el efecto protector de la proteína C activada (PCA) en sepsis y su relación con la disminución de la apoptosis de las células endoteliales. En este trabajo se analizó la activación de las quinasas AKT, ASK1, SAPK/JNK y p38 en un modelo de apoptosis endotelial usando las técnicas de Western Blotting y ELISA. Las células endoteliales (EA.hy926), se trataron con C2-ceramida (130μM) en presencia de inhibidores químicos de cada una de estas quinasas y PCA. La supervivencia de las células en presencia de inhibidores químicos y PCA fue evaluada por medio de ensayos de activación de las caspasas 3, 7 y 9, que verificaban la muerte celular por apoptosis. Los resultados evidencian que la ceramida reduce la activación de AKT y aumenta la activación de las quinasas ASK, SAPK/JNK y p38, en tanto que PCA ejerce el efecto contrario. Adicionalmente se encontró que la tiorredoxina incrementa la activación/fosforilación de AKT, mientras que la quinasa p38 induce la defosforilación de AKT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Hexaploid wheat is one of the most important cereal crops for human nutrition. Molecular understanding of the biology of the developing grain will assist the improvement of yield and quality traits for different environments. High quality transcriptomics is a powerful method to increase this understanding. Results: The transcriptome of developing caryopses from hexaploid wheat ( Triticum aestivum, cv. Hereward) was determined using Affymetrix wheat GeneChip (R) oligonucleotide arrays which have probes for 55,052 transcripts. Of these, 14,550 showed significant differential regulation in the period between 6 and 42 days after anthesis ( daa). Large changes in transcript abundance were observed which were categorised into distinct phases of differentiation ( 6 - 10 daa), grain fill ( 12 - 21 daa) and desiccation/maturation ( 28 - 42 daa) and were associated with specific tissues and processes. A similar experiment on developing caryopses grown with dry and/or hot environmental treatments was also analysed, using the profiles established in the first experiment to show that most environmental treatment effects on transcription were due to acceleration of development, but that a few transcripts were specifically affected. Transcript abundance profiles in both experiments for nine selected known and putative wheat transcription factors were independently confirmed by real time RT-PCR. These expression profiles confirm or extend our knowledge of the roles of the known transcription factors and suggest roles for the unknown ones. Conclusion: This transcriptome data will provide a valuable resource for molecular studies on wheat grain. It has been demonstrated how it can be used to distinguish general developmental shifts from specific effects of treatments on gene expression and to diagnose the probable tissue specificity and role of transcription factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Fox genes are united by encoding a fork head domain, a deoxyribonucleic acid (DNA)-binding domain of the winged-helix type that marks these genes as encoding transcription factors. Vertebrate Fox genes are classified into 23 subclasses named from FoxA to FoxS. We have surveyed the genome of the amphioxus Branchiostoma floridae, identifying 32 distinct Fox genes representing 21 of these 23 subclasses. The missing subclasses, FoxR and FoxS, are specific to vertebrates, and in addition, B. floridae has one further group, FoxAB, that is not found in vertebrates. Hence, we conclude B. floridae has maintained a high level of Fox gene diversity. Expressed sequence tag and complementary DNA sequence data support the expression of 23 genes. Several linkages between B. floridae Fox genes were noted, including some that have evolved relatively recently via tandem duplication in the amphioxus lineage and others that are more ancient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The E2F transcription factors are instrumental in regulating cell cycle progression and growth, including that in cardiomyocytes, which exit the cell cycle shortly after birth. E2F-6 has been demonstrated to act as a transcriptional repressor; however, its potential role in normal cardiomyocyte proliferation and hypertrophy has not previously been investigated. Here we report the isolation and characterisation of E2F-6 and E2F-6b in rat cardiomyocytes and consider its potential as a target for myocardial regeneration following injury. At the mRNA level, both rat E2F-6 and the alternatively spliced variant, E2F-6b, were expressed in E18 myocytes and levels were maintained throughout development into adulthood. Interestingly, E2F-6 protein expression was down-regulated during myocyte development suggesting that it is regulated post-transcriptionally in these cells. During myocyte hypertrophy, the mRNA expressions of E2F-6 and E2F-6b were not regulated whereas E2F-6 protein was up-regulated significantly. Indeed, E2F-6 protein expression levels closely parallel the developmental withdrawal of myocytes from the cell cycle and the subsequent reactivation of their cell cycle machinery during hypertrophic growth. Furthermore, depletion of E2F-6, using anti-sense technology, results in death of cultured neonatal myocytes. Taken together, abrogation of E2F-6 expression in neonatal cardiomyocytes leads to a significant decrease in their viability, consistent with the notion that E2F-6 might be required for maintaining normal myocyte growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metal I oestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cupin superfamily of proteins, named on the basis of a conserved β-barrel fold (‘cupa’ is the Latin term for a small barrel), was originally discovered using a conserved motif found within germin and germin-like proteins from higher plants. Previous analysis of cupins had identified some 18 different functional classes that range from single-domain bacterial enzymes such as isomerases and epimerases involved in the modification of cell wall carbohydrates, through to two-domain bicupins such as the desiccation-tolerant seed storage globulins, and multidomain transcription factors including one linked to the nodulation response in legumes. Recent advances in comparative genomics, and the resolution of many more 3-D structures have now revealed that the largest subset of the cupin superfamily is the 2-oxyglutarate-Fe2+ dependent dioxygenases. The substrates for this subclass of enzyme are many and varied and in total amount to probably 50–100 different biochemical reactions, including several involved in plant growth and development. Although the majority of enzymatic cupins contain iron as an active site metal, other members contain either copper, zinc, cobalt, nickel or manganese ions as a cofactor, with each cofactor allowing a different type of chemistry to occur within the conserved tertiary structure. This review discusses the range of structures and functions found in this most diverse of superfamilies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The vertebrate Zic gene family encodes C2H2 zinc finger transcription factors closely related to the Gli proteins. Zic genes are expressed in multiple areas of developing vertebrate embryos, including the dorsal neural tube where they act as potent neural crest inducers. Here we describe the characterization of a Zic ortholog from the amphioxus Branchiostoma floridae and further describe the expression of a Zic ortholog from the ascidian Ciona intestinalis. Molecular phylogenetic analysis and sequence comparisons suggest the gene duplications that formed the vertebrate Zic family were specific to the vertebrate lineage. In Ciona maternal CiZic/Ci-macho1 transcripts are localized during cleavage stages by asymmetric cell division, whereas zygotic expression by neural plate cells commences during neurulation. The amphioxus Zic ortholog AmphiZic is expressed in dorsal mesoderm and ectoderm during gastrulation, before being eliminated first from midline cells and then from all neurectoderm during neurulation. After neurulation, expression is reactivated in the dorsal neural tube and dorsolateral somite. Comparison of CiZic and AmphiZic expression with vertebrate Zic expression leads to two main conclusions. First, Zic expression allows us to define homologous compartments between vertebrate and amphioxus somites, showing primitive subdivision of vertebrate segmented mesoderm. Second, we show that neural Zic expression is a chordate synapomorphy, whereas the precise pattern of neural expression has evolved differently on the different chordate lineages. Based on these observations we suggest that a change in Zic regulation, specifically the evolution of a dorsal neural expression domain in vertebrate neurulae, was an important step in the evolution of the neural crest.