987 resultados para Focal cerebral ischemic reperfusion
Resumo:
Background: Macular edema resulting from central retinal vein occlusion is effectively treated with anti-vascular endothelial growth factor injections. However, some patients need monthly retreatment and still show frequent recurrences. The purpose of this study was to evaluate the visual and anatomic outcomes of refractory macular edema resulting from ischemic central retinal vein occlusion in patients switched from ranibizumab to aflibercept intravitreal injections. Patients and Methods: We describe a retrospective series of patients followed in the Medical Retina Unit of the Jules Gonin Eye Hospital for macular edema due to ischemic central retinal vein occlusion, refractory to monthly retreatment with ranibizumab, and changed to aflibercept. Refractory macular edema was defined as persistence of any fluid at each visit one month after last injection during at least 6 months. All patients had to have undergone pan-retinal laser scan. Results: Six patients were identified, one of whom had a very short-term follow-up (excluded from statistics). Mean age was 57 ± 12 years. The mean changes in visual acuity and central macular thickness from baseline to switch were + 20.6 ± 20.3 ETDRS letters and - 316.4 ± 276.6 µm, respectively. The additional changes from before to after the switch were + 9.2 ± 9.5 ETDRS letters and - 248.0 ± 248.7 µm, respectively. The injection intervals could often be lengthened after the switch. Conclusions: Intravitreal aflibercept seems to be a promising alternative treatment for macular edema refractory to ranibizumab in ischemic central retinal vein occlusion.
Resumo:
Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes. However, the pathway by which DNA degradation ensues following Bnip3 activation is not resolved. To identify the mechanism involved, we analyzed the interdependence of Bnip3, Nix and EndoG in mitochondrial damage and DNA fragmentation during experimental ischemia in neonatal rat ventricular cardiomyocytes. Our results show that the expression of EndoG and Bnip3 increases in the heart throughout development, while the caspase-dependent machinery is silenced. TUNEL-positive DNA damage, which depends on caspase activity in other cells, is caspase-independent in ischemic cardiomyocytes and ischemia-induced DNA high and low molecular weight fragmentation is blocked by repressing EndoG expression. Ischemia-induced EndoG translocation and DNA degradation are prevented by silencing the expression of Bnip3, but not Nix, or by overexpressing Bcl-xL. These data establish a link between Bnip3 and EndoG-dependent, TUNEL-positive, DNA fragmentation in ischemic cardiomyocytes in the absence of caspases, defining an alternative cell death pathway in postmitotic cells.
Resumo:
Neuroprotective strategies that limit secondary tissue loss and/or improve functional outcomes have been identified in multiple animal models of ischemic, hemorrhagic, traumatic and nontraumatic cerebral lesions. However, use of these potential interventions in human randomized controlled studies has generally given disappointing results. In this paper, we summarize the current status in terms of neuroprotective strategies, both in the immediate and later stages of acute brain injury in adults. We also review potential new strategies and highlight areas for future research.
Resumo:
BACKGROUND: Normobaric oxygen therapy is frequently applied in neurocritical care, however, whether supplemental FiO2 has beneficial cerebral effects is still controversial. We examined in patients with severe traumatic brain injury (TBI) the effect of incremental FiO2 on cerebral excitotoxicity, quantified by cerebral microdialysis (CMD) glutamate. METHODS: This was a retrospective analysis of a database of severe TBI patients monitored with CMD and brain tissue oxygen (PbtO2). The relationship of FiO2-categorized into four separate ranges (<40, 41-60, 61-80, and >80 %)-with CMD glutamate was examined using ANOVA with Tukey's post hoc test. RESULTS: A total of 1,130 CMD samples from 36 patients-monitored for a median of 4 days-were examined. After adjusting for brain (PbtO2, intracranial pressure, cerebral perfusion pressure, lactate/pyruvate ratio, Marshall CT score) and systemic (PaCO2, PaO2, hemoglobin, APACHE score) covariates, high FiO2 was associated with a progressive increase in CMD glutamate [8.8 (95 % confidence interval 7.4-10.2) µmol/L at FiO2 < 40 % vs. 12.8 (10.9-14.7) µmol/L at 41-60 % FiO2, 19.3 (15.6-23) µmol/L at 61-80 % FiO2, and 22.6 (16.7-28.5) µmol/L at FiO2 > 80 %; multivariate-adjusted p < 0.05]. The threshold of FiO2-related increase in CMD glutamate was lower for samples with normal versus low PbtO2 < 20 mmHg (FiO2 > 40 % vs. FiO2 > 60 %). Hyperoxia (PaO2 > 150 mmHg) was also associated with increased CMD glutamate (adjusted p < 0.001). CONCLUSIONS: Incremental normobaric FiO2 levels were associated with increased cerebral excitotoxicity in patients with severe TBI, independent from PbtO2 and other important cerebral and systemic determinants. These data suggest that supra-normal oxygen may aggravate secondary brain damage after severe TBI.
Resumo:
OBJECTIVES: To prospectively assess the stiffness of incidentally discovered focal liver lesions (FLL) with no history of chronic liver disease or extrahepatic cancer using shearwave elastography (SWE). METHODS: Between June 2011 and May 2012, all FLL fortuitously discovered on ultrasound examination were prospectively included. For each lesion, stiffness was measured (kPa). Characterization of the lesion relied on magnetic resonance imaging (MRI) and/or contrast-enhanced ultrasound, or biopsy. Tumour stiffness was analysed using ANOVA and non-parametric Mann-Whitney tests. RESULTS: 105 lesions were successfully evaluated in 73 patients (61 women, 84%) with a mean age of 44.8 (range: 20‒75). The mean stiffness was 33.3 ± 12.7 kPa for the 60 focal nodular hyperplasia (FNH), 19.7 ± 9.8 k Pa for the 17 hepatocellular adenomas (HCA), 17.1 ± 7 kPa for the 20 haemangiomas, 11.3 ± 4.3 kPa for the five focal fatty sparing, 34.1 ± 7.3 kPa for the two cholangiocarcinomas, and 19.6 kPa for one hepatocellular carcinoma (p < 0.0001). There was no difference between the benign and the malignant groups (p = 0.64). FNHs were significantly stiffer than HCAs (p < 0.0001). Telangiectatic/inflammatory HCAs were significantly stiffer than the steatotic HCAs (p = 0.014). The area under the ROC curve (AUROC) for differentiating FNH from other lesions was 0.86 ± 0.04. CONCLUSION: SWE may provide additional information for the characterization of FFL, and may help in differentiating FNH from HCAs, and in subtyping HCAs. KEY POINTS: ? SWE might be helpful for the characterization of solid focal liver lesions ? SWE cannot differentiate benign from malignant liver lesions ? FNHs are significantly stiffer than other benign lesions ? Telangiectatic/inflammatory HCA are significantly stiffer than steatotic ones.
Resumo:
IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies. OBJECTIVE: To use individual participant data meta-analysis to estimate the prevalence of amyloid pathology as measured with biomarkers in participants with normal cognition, subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). DATA SOURCES: Relevant biomarker studies identified by searching studies published before April 2015 using the MEDLINE and Web of Science databases and through personal communication with investigators. STUDY SELECTION: Studies were included if they provided individual participant data for participants without dementia and used an a priori defined cutoff for amyloid positivity. DATA EXTRACTION AND SYNTHESIS: Individual records were provided for 2914 participants with normal cognition, 697 with SCI, and 3972 with MCI aged 18 to 100 years from 55 studies. MAIN OUTCOMES AND MEASURES: Prevalence of amyloid pathology on positron emission tomography or in cerebrospinal fluid according to AD risk factors (age, apolipoprotein E [APOE] genotype, sex, and education) estimated by generalized estimating equations. RESULTS: The prevalence of amyloid pathology increased from age 50 to 90 years from 10% (95% CI, 8%-13%) to 44% (95% CI, 37%-51%) among participants with normal cognition; from 12% (95% CI, 8%-18%) to 43% (95% CI, 32%-55%) among patients with SCI; and from 27% (95% CI, 23%-32%) to 71% (95% CI, 66%-76%) among patients with MCI. APOE-ε4 carriers had 2 to 3 times higher prevalence estimates than noncarriers. The age at which 15% of the participants with normal cognition were amyloid positive was approximately 40 years for APOE ε4ε4 carriers, 50 years for ε2ε4 carriers, 55 years for ε3ε4 carriers, 65 years for ε3ε3 carriers, and 95 years for ε2ε3 carriers. Amyloid positivity was more common in highly educated participants but not associated with sex or biomarker modality. CONCLUSIONS AND RELEVANCE: Among persons without dementia, the prevalence of cerebral amyloid pathology as determined by positron emission tomography or cerebrospinal fluid findings was associated with age, APOE genotype, and presence of cognitive impairment. These findings suggest a 20- to 30-year interval between first development of amyloid positivity and onset of dementia.
Resumo:
Despite its small fraction of the total body weight (2%), the brain contributes for 20% and 25% respectively of the total oxygen and glucose consumption of the whole body. Indeed, glucose has been considered the energy substrate par excellence for the brain. However, evidence accumulated over the last half century revealed an important role for the monocarboxylate lactate in fulfilling the energy needs of neurons. This is particularly true during physiological neuronal activation and in pathological conditions. Lactate transport into and out of the cell is mediated by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, only three of them have been well characterized: MCT2 is the predominant neuronal isoform, while the other non¬neuronal cell types of the brain express the ubiquitous isoform MCT1. Quite recently, the MCT4 isoform has been described in astrocytes. Due to its high transport capacity compared to the other two isoforms, MCT4 is particularly adapted for glycolytic cells. Because of its recent discovery in the brain, nothing was known about its regulation in the central nervous system. Here we show that MCT4 is regulated by oxygen levels in primary cultures of astrocytes in a time- and concentration-dependent manner via the hypoxia inducible factor-la (HIF-la). Moreover, we showed that MCT4 expression is essential for astrocyte survival under low oxygen conditions. In parallel, we investigated the possible implication of the pyruvate kinase isoform Pkm2, a strong enhancer of glycolysis, in its regulation. Then we showed that MCT4 expression, as well as the expression of the other two MCT isoforms, is altered in a murine model of stroke. Surprisingly, neurons started to express MCT4, as well as MCT1, under such conditions. Altogether, these data suggest that MCT4, due to its high transport capacity for lactate, may be the isoform that enables cells to operate a major metabolic adaptation in response to pathological situations that alter metabolic homeostasis of the brain. -- Le cerveau représente 2% du poids corporel total, mais il contribue pour 20% de la consommation totale d'oxygène et 25% de celle de glucose au repos. Le glucose est considéré comme le substrat énergétique par excellence pour le cerveau. Néanmoins, depuis un demi- siècle maintenant, de plus en plus de travaux ont démontré que le lactate joue un rôle majeur dans le métabolisme cérébral et est capable du subvenir aux besoins énergétiques des neurones. Le lactate est tout particulièrement nécessaire pendant l'activation neuronale ainsi qu'en situation pathologique. Le transport du lactate à travers la barrière hématoencéphalique ainsi qu'à travers les membranes cellulaires est assuré par la famille des transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, uniquement trois d'entre eux ont été décrits: MCT2 est considéré comme le transporteur neuronal, alors que les autres types cellulaires qui constituent le cerveau expriment l'isoforme ubiquitaire MCT1. Récemment, l'isoforme MCT4 a été rapportée sur les astrocytes. Dû à sa grande capacité de transport pour le lactate, MCT4 est tout particulièrement adapté pour soutenir le métabolisme des cellules hautement glycolytiques, comme les astrocytes. En raison de sa toute récente découverte, les aspects comprenant sa régulation et son rôle dans le cerveau sont pour l'instant méconnus. Les résultats exposés dans ce travail démontrent dans un premier temps que l'expression de MCT4 est régulée par les niveaux d'oxygène dans les cultures d'astrocytes corticaux par le biais du facteur de transcription HIF-la. De plus, nous avons démontré que l'expression de MCT4 est essentielle à la survie des astrocytes quand le niveau d'oxygénation baisse. En parallèle, des résultats préliminaires suggèrent que l'isoforme 2 de la pyruvate kinase, un puissant régulateur de la glycolyse, pourrait jouer un rôle dans la régulation de MCT4. Dans la deuxième partie du travail nous avons démontré que l'expression de MCT4, ainsi que celle de MCT1 et MCT2, est altérée dans un modèle murin d'ischémie cérébrale. De façon surprenante, les neurones expriment MCT4 dans cette condition, alors que ce n'est pas le cas en condition physiologique. En tenant compte de ces résultats, nous suggérons que MCT4, dû à sa particulièrement grande capacité de transport pour le lactate, représente le MCT qui permet aux cellules du système nerveux central, notamment les astrocytes et les neurones, de s'adapter à de très fortes perturbations de l'homéostasie métabolique du cerveau qui surviennent en condition pathologique.
Resumo:
¿El tratamiento mediante la inducción miofascial disminuye la espasticidad en los pacientes con Parálisis Cerebral Espástica (PCE) mientras son intervenidos con un tratamiento convencional? Objetivos: Comprobar si la inducción miofascial disminuye la espasticidad en pacientes con parálisis cerebral espástica (PCE) y así mismo prevenir las complicaciones musculoesqueléticas y aumentar el rango de movilidad articular. Metodología: Ensayo controlado clínico aleatorizado que recoge un total de 96 casos de PCE con Grado l, ll y lll de afectación según la Escala de clasificación Gross Motor Function Measure (GMFM). Se asignará de forma aleatoria y equitativamente 48 sujetos al grupo control aplicándose el tratamiento convencional y 48 sujetos al grupo experimental, donde la inducción miofascial se complementará con tratamiento convencional. Durante 3 meses se llevará a cabo el plan de intervención, 2 días a la semana en ambos grupos. Los datos serán analizados a través de las siguientes escalas: el tono muscular (Escala de Ashworth Modificada, Escala de Tardieu, Test pendular Wartenberg) funcionalidad y actividad (Gross Motor Function Classification System, Gross Motor Function Mesurement, Pediatric Evaluation of Disability Inventory), valoración neurológica (National Institute of NEurological Disordes and Stroke Scale) y la satisfacción del paciente (Questionnaire on Pain Caused by Spasticity). Estos datos serán extraidos el primer día, el último y 3 meses más tarde a modo de seguimiento. Durante el plan de intervención también se realizarán valoraciones semanales y mensuales.
Resumo:
Myocardial ischaemia-reperfusion (MIR) triggers a sterile inflammatory response important for myocardial healing, but which may also contribute to adverse ventricular remodelling. Such inflammation is initiated by molecular danger signals released by damaged myocardium, which induce innate immune responses by activating toll-like receptors (TLRs). Detrimental roles have been recently reported for TLR2, TLR3 and TLR4. The role of other TLRs is unknown. We therefore evaluated the role of TLR5, expressed at high level in the heart, in the development of myocardial damage and inflammation acutely triggered by MIR. TLR5-/- and wild-type (WT) mice were exposed to MIR (30 min ischaemia, 2 h reperfusion). We measured infarct size, markers of cardiac oxidative stress, myocardial phosphorylation state of mitogen-activated protein (MAP) kinases and AKT, expression levels of chemokines and cytokines in the heart and plasma, as well as cardiac function by echography and conductance volumetry. TLR5-deficient mice had normal cardiac morphology and function under physiological conditions. After MIR, the absence of TLR5 promoted an increase in infarct size and myocardial oxidative stress. Lack of TLR5 fostered p38 phosphorylation, reduced AKT phosphorylation and markedly increased the expression of inflammatory cytokines, whereas it precipitated acute LV (left ventricle) dysfunction. Therefore, contrary to the detrimental roles of TLR2, TLR3 and TLR4 in the infarcted heart, TLR5 is important to limit myocardial damage, inflammation and functional compromise after MIR.
Resumo:
We report the case of a 37-year-old woman who developed critical upper limb ischemia caused by a cervical rib. Because the malformation was initially undiagnosed, a vascular bypass was performed, and failure occurred. Following a 6-month therapy with sildenafil, revascularization of the arm was successful and amputation was avoided. A 6-year follow-up shows a rich collateral network at the compression site and normal values of digital plethysmography. Because hand surgeons often see patients with digital ulcerations and other manifestations of peripheral vascular pathology, therapy of ischemia with sildenafil could be an effective treatment option in patients not responding to classic drugs.
Resumo:
We examined the effect of anterior ischemic optic neuropathy (AION) on the activity of intrinsically photosensitive retinal ganglion cells (ipRGCs) using the pupil as proxy. Eighteen patients with AION (10 unilateral, 8 bilateral) and 29 age-matched control subjects underwent chromatic pupillometry. Red and blue light stimuli increasing in 0.5 log steps were presented to each eye independently under conditions of dark and light adaptation. The recorded pupil contraction was plotted against stimulus intensity to generate scotopic and photopic response curves for assessment of synaptically-mediated ipRGC activity. Bright blue light stimuli presented monocularly and binocularly were used for melanopsin activation. The post-stimulus pupil size (PSPS) at the 6th second following stimulus offset was the marker of intrinsic ipRGC activity. Finally, questionnaires were administered to assess the influence of ipRGCs on sleep. The pupil response and PSPS to all monocularly-presented light stimuli were impaired in AION eyes, indicating ipRGC dysfunction. To binocular light stimulation, the PSPS of AION patients was similar to that of controls. There was no difference in the sleep habits of the two groups. Thus after ischemic injury to one or both optic nerves, the summated intrinsic ipRGC activity is preserved when both eyes receive adequate light exposure.