999 resultados para Fluido Supercrítico
Resumo:
A possible future scenario for the water injection (WI) application has been explored as an advanced strategy for modern GDI engines. The aim is to verify whether the PWI (Port Water Injection) and DWI (Direct Water Injection) architectures can replace current fuel enrichment strategies to limit turbine inlet temperatures (TiT) and knock engine attitude. In this way, it might be possible to extend the stoichiometric mixture condition over the entire engine map, meeting possible future restrictions in the use of AES (Auxiliary Emission Strategies) and future emission limitations. The research was first addressed through a comprehensive assessment of the state-of-the-art of the technology and the main effects of the chemical-physical water properties. Then, detailed chemical kinetics simulations were performed in order to compute the effects of WI on combustion development and auto-ignition. The latter represents an important methodology step for accurate numerical combustion simulations. The water injection was then analysed in detail for a PWI system, through an experimental campaign for macroscopic and microscopic injector characterization inside a test chamber. The collected data were used to perform a numerical validation of the spray models, obtaining an excellent matching in terms of particle size and droplet velocity distributions. Finally, a wide range of three-dimensional CFD simulations of a virtual high-bmep engine were realized and compared, exploring also different engine designs and water/fuel injection strategies under non-reacting and reacting flow conditions. According to the latter, it was found that thanks to the introduction of water, for both PWI and DWI systems, it could be possible to obtain an increase of the target performance and an optimization of the bsfc (Break Specific Fuel Consumption), lowering the engine knock risk at the same time, while the TiT target has been achieved hardly only for one DWI configuration.
Resumo:
The thesis work deals with topics that led to the development of innovative control-oriented models and control algorithms for modern gasoline engines. Knock in boosted spark ignition engines is the widest topic discussed in this document because it remains one of the most limiting factors for maximizing combustion efficiency in this kind of engine. First chapter is thus focused on knock and a wide literature review is proposed to summarize the preliminary knowledge that even represents the background and the reference for discussed activities. Most relevant results achieved during PhD course in the field of knock modelling and control are then presented, describing every control-oriented model that led to the development of an adaptive model-based combustion control system. The complete controller has been developed in the context of the collaboration with Ferrari GT and it allowed to completely redefine the knock intensity evaluation as well as the combustion phase control. The second chapter is focused on the activity related to a prototyping Port Water Injection system that has been developed and tested on a turbocharged spark ignition engine, within the collaboration with Magneti Marelli. Such system and the effects of injected water on the combustion process were then modeled in a 1-D simulation environment (GT Power). Third chapter shows the development and validation of a control-oriented model for the real-time calculation of exhaust gas temperature that represents another important limitation to the performance increase in modern boosted engines. Indeed, modelling of exhaust gas temperature and thermocouple behavior are themes that play a key role in the optimization of combustion and catalyst efficiency.
Resumo:
Nowadays the production of increasingly complex and electrified vehicles requires the implementation of new control and monitoring systems. This reason, together with the tendency of moving rapidly from the test bench to the vehicle, leads to a landscape that requires the development of embedded hardware and software to face the application effectively and efficiently. The development of application-based software on real-time/FPGA hardware could be a good answer for these challenges: FPGA grants parallel low-level and high-speed calculation/timing, while the Real-Time processor can handle high-level calculation layers, logging and communication functions with determinism. Thanks to the software flexibility and small dimensions, these architectures can find a perfect collocation as engine RCP (Rapid Control Prototyping) units and as smart data logger/analyser, both for test bench and on vehicle application. Efforts have been done for building a base architecture with common functionalities capable of easily hosting application-specific control code. Several case studies originating in this scenario will be shown; dedicated solutions for protype applications have been developed exploiting a real-time/FPGA architecture as ECU (Engine Control Unit) and custom RCP functionalities, such as water injection and testing hydraulic brake control.
Resumo:
Today, the contribution of the transportation sector on greenhouse gases is evident. The fast consumption of fossil fuels and its impact on the environment has given a strong impetus to the development of vehicles with better fuel economy. Hybrid electric vehicles fit into this context with different targets, starting from the reduction of emissions and fuel consumption, but also for performance and comfort enhancement. Vehicles exist with various missions; super sport cars usually aim to reach peak performance and to guarantee a great driving experience to the driver, but great attention must also be paid to fuel consumption. According to the vehicle mission, hybrid vehicles can differ in the powertrain configuration and the choice of the energy storage system. Lamborghini has recently invested in the development of hybrid super sport cars, due to performance and comfort reasons, with the possibility to reduce fuel consumption. This research activity has been conducted as a joint collaboration between the University of Bologna and the sportscar manufacturer, to analyze the impact of innovative energy storage solutions on the hybrid vehicle performance. Capacitors have been studied and modeled to analyze the pros and cons of such solution with respect to batteries. To this aim, a full simulation environment has been developed and validated to provide a concept design tool capable of precise results and able to foresee the longitudinal performance on regulated emission cycles and real driving conditions, with a focus on fuel consumption. In addition, the target of the research activity is to deepen the study of hybrid electric super sports cars in the concept development phase, focusing on defining the control strategies and the energy storage system’s technology that best suits the needs of the vehicles. This dissertation covers the key steps that have been carried out in the research project.
Resumo:
This work resumes a wide variety of research activities carried out with the main objective of increasing the efficiency and reducing the fuel consumption of Gasoline Direct Injection engines, especially under high loads. For this purpose, two main innovative technologies have been studied, Water Injection and Low-Pressure Exhaust Gas Recirculation, which help to reduce the temperature of the gases inside the combustion chamber and thus mitigate knock, being this one of the main limiting factors for the efficiency of modern downsized engines that operate at high specific power. A prototypal Port Water Injection system was developed and extensive experimental work has been carried out, initially to identify the benefits and limitations of this technology. This led to the subsequent development and testing of a combustion controller, which has been implemented on a Rapid Control Prototyping environment, capable of managing water injection to achieve knock mitigation and a more efficient combustion phase. Regarding Low-Pressure Exhaust Gas Recirculation, a commercial engine that was already equipped with this technology was used to carry out experimental work in a similar fashion to that of water injection. Another prototypal water injection system has been mounted to this second engine, to be able to test both technologies, at first separately to compare them on equal conditions, and secondly together in the search of a possible synergy. Additionally, based on experimental data from several engines that have been tested during this study, including both GDI and GCI engines, a real-time model (or virtual sensor) for the estimation of the maximum in-cylinder pressure has been developed and validated. This parameter is of vital importance to determine the speed at which damage occurs on the engine components, and therefore to extract the maximum performance without inducing permanent damages.
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of the global warming. In this context, the transportation sector plays a vital role, since it is responsible for a large part of carbon dioxide production. In order to address these issues, the present thesis deals with the development of advanced control strategies for the energy efficiency optimization of plug-in hybrid electric vehicles (PHEVs), supported by the prediction of future working conditions of the powertrain. In particular, a Dynamic Programming algorithm has been developed for the combined optimization of vehicle energy and battery thermal management. At this aim, the battery temperature and the battery cooling circuit control signal have been considered as an additional state and control variables, respectively. Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS) has been modified to handle zero-emission zones, where engine propulsion is not allowed. Navigation data represent an essential element in the achievement of these tasks. With this aim, a novel simulation and testing environment has been developed during the PhD research activity, as an effective tool to retrieve routing information from map service providers via vehicle-to-everything connectivity. Comparisons between the developed and the reference strategies are made, as well, in order to assess their impact on the vehicle energy consumption. All the activities presented in this doctoral dissertation have been carried out at the Green Mobility Research Lab} (GMRL), a research center resulting from the partnership between the University of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.
Resumo:
Nowadays the development of new Internal Combustion Engines is mainly driven by the need to reduce tailpipe emissions of pollutants, Green-House Gases and avoid the fossil fuels wasting. The design of dimension and shape of the combustion chamber together with the implementation of different injection strategies e.g., injection timing, spray targeting, higher injection pressure, play a key role in the accomplishment of the aforementioned targets. As far as the match between the fuel injection and evaporation and the combustion chamber shape is concerned, the assessment of the interaction between the liquid fuel spray and the engine walls in gasoline direct injection engines is crucial. The use of numerical simulations is an acknowledged technique to support the study of new technological solutions such as the design of new gasoline blends and of tailored injection strategies to pursue the target mixture formation. The current simulation framework lacks a well-defined best practice for the liquid fuel spray interaction simulation, which is a complex multi-physics problem. This thesis deals with the development of robust methodologies to approach the numerical simulation of the liquid fuel spray interaction with walls and lubricants. The accomplishment of this task was divided into three tasks: i) setup and validation of spray-wall impingement three-dimensional CFD spray simulations; ii) development of a one-dimensional model describing the liquid fuel – lubricant oil interaction; iii) development of a machine learning based algorithm aimed to define which mixture of known pure components mimics the physical behaviour of the real gasoline for the simulation of the liquid fuel spray interaction.
Resumo:
La modellazione di una pompa gerotor può essere svolta mediante l'utilizzo di modelli matematici di tipo numerico. Questo tipo di soluzione prevedere la realizzazione di un dominio fluido discretizzato. In questo lavoro l'analisi è stata effettuata mediante il software STAR-CCM+. Sono state applicate due tecniche per la discretizzazione del dominio, l'Overset ed il Morphing, applicabili in problemi di interazione tra fluido e struttura in movimento. Analizzate le due tecniche, la seconda è stata applicata nello studio del comportamento di una pompa gerotor. I risultati ottenuti hanno portato alla definizione di un secondo modello ottimizzato mediante la variazione della luce di aspirazione.
Resumo:
Lo scopo di questo lavoro di tesi si focalizza sullo studio, sia dal punto di vista analitico che da quello numerico, della conduzione del calore non stazionaria di un mezzo poroso rettangolare saturo di fluido. Per descrivere tale fenomeno sono state adoperate le equazioni di bilancio dell’energia modellate tramite la teoria del non-equilibrio termico locale, cioè una coppia di equazioni di bilancio dell’energia sia per la fase solida sia per la fase fluida, dipendenti l’una dall’altra in quanto legate dal termine generativo di interfase. La necessità di avere due equazioni di bilancio dell’energia è dovuta a una caratteristica importante dei processi di trasferimento del calore in una schiuma metallica. In questo elaborato verranno risolte numericamente le equazioni di biliancio dell’energia del non-equilibrio termico locale, tramite l’ausilio del programma di calcolo MATLAB e il suo solutore “pdepe”, indagando e proponendo una soluzione al “paradosso” introdotto da Vadazs* nel suo articolo. Tale paradosso si presenta quando si risolvono analiticamente le equazioni di bilancio dell’energia del non-equilibrio termico locale applicando due metodi differenti: il metodo di sostituzione delle variabili e il metodo di separazione delle variabili dipendenti. Dai risultati ottenuti da Vadasz emerge una discrepanza tra i due metodi in quanto uno dei due porta a predire un comportamento di equilibrio termico tra le due fasi a ogni istante di tempo, mentre l’altro predirebbe un comportamento di non-equilibrio termico locale tra le due fasi, particolarmente evidente nei primi istanti di tempo. Successivamente si è analizzato il problema di conduzione studiandone la variazione dei transitori termici del campo di temperatura della fase solida e dalla fase fluida al mutare dei parametri adimensionali che caratterizzano le equazioni di bilancio dell’energia nella sue forme adimensionalizzate.
Resumo:
L’aumento del consumo di energia globale e le problematiche legate all’inquinamento stanno rendendo indispensabile lo spostamento verso fonti di energia rinnovabile. La digestione anaerobica rappresenta una possibile soluzione in quanto permette di produrre biogas da biomassa organica di scarto ma, l’ottimizzazione del processo risulta difficoltosa a causa delle numerose variabili chimiche, biologiche, fisiche e geometriche correlate. Nel presente elaborato, concentrandosi sulle problematiche relative alla miscelazione interna, è stata investigata la fluidodinamica interna di un reattore modello ottenuto tramite scale-down di un digestore anaerobico industriale che presentava problemi di sedimentazione di sostanza solida sul fondo del reattore. Tramite tecniche di diagnostica ottiche, è stato studiato il movimento del fluido, prima utilizzando acqua demineralizzata e poi una soluzione di gomma di xantano come fluido di processo, al fine di studiare il campo di moto medio interno al reattore. Le tecniche utilizzate sono la Particle Image Velocimetry (PIV) e la Planar Laser Induced Fluorescence (PLIF). Al fine di rendere il sistema investigato il più rappresentativo possibile del digestore industriale, è stato utilizzato come fluido di processo per alcune delle prove raccolte, una soluzione acquosa 1,0g/kg di gomma di xantano, le cui proprietà reologiche sono state investigate grazie ad un Reometro Anton Paar MCR 301.
Resumo:
Although its great potential as low to medium temperature waste heat recovery (WHR) solution, the ORC technology presents open challenges that still prevent its diffusion in the market, which are different depending on the application and the size at stake. Focusing on the micro range power size and low temperature heat sources, the ORC technology is still not mature due to the lack of appropriate machines and working fluids. Considering instead the medium to large size, the technology is already available but the investment is still risky. The intention of this thesis is to address some of the topical themes in the ORC field, paying special attention in the development of reliable models based on realistic data and accounting for the off-design performance of the ORC system and of each of its components. Concerning the “Micro-generation” application, this work: i) explores the modelling methodology, the performance and the optimal parameters of reciprocating piston expanders; ii) investigates the performance of such expander and of the whole micro-ORC system when using Hydrofluorocarbons as working fluid or their new low GWP alternatives and mixtures; iii) analyzes the innovative ORC reversible architecture (conceived for the energy storage), its optimal regulation strategy and its potential when inserted in typical small industrial frameworks. Regarding the “Industrial WHR” sector, this thesis examines the WHR opportunity of ORCs, with a focus on the natural gas compressor stations application. This work provides information about all the possible parameters that can influence the optimal sizing, the performance and thus the feasibility of installing an ORC system. New WHR configurations are explored: i) a first one, relying on the replacement of a compressor prime mover with an ORC; ii) a second one, which consists in the use of a supercritical CO2 cycle as heat recovery system.
Resumo:
Power-to-Gas storage systems have the potential to address grid-stability issues that arise when an increasing share of power is generated from sources that have a highly variable output. Although the proof-of-concept of these has been promising, the behaviour of the processes in off-design conditions is not easily predictable. The primary aim of this PhD project was to evaluate the performance of an original Power-to-Gas system, made up of innovative components. To achieve this, a numerical model has been developed to simulate the characteristics and the behaviour of the several components when the whole system is coupled with a renewable source. The developed model has been applied to a large variety of scenarios, evaluating the performance of the considered process and exploiting a limited amount of experimental data. The model has been then used to compare different Power-to-Gas concepts, in a real scenario of functioning. Several goals have been achieved. In the concept phase, the possibility to thermally integrate the high temperature components has been demonstrated. Then, the parameters that affect the energy performance of a Power-to-Gas system coupled with a renewable source have been identified, providing general recommendations on the design of hybrid systems; these parameters are: 1) the ratio between the storage system size and the renewable generator size; 2) the type of coupled renewable source; 3) the related production profile. Finally, from the results of the comparative analysis, it is highlighted that configurations with a highly oversized renewable source with respect to the storage system show the maximum achievable profit.
Resumo:
Besides increasing the share of electric and hybrid vehicles, in order to comply with more stringent environmental protection limitations, in the mid-term the auto industry must improve the efficiency of the internal combustion engine and the well to wheel efficiency of the employed fuel. To achieve this target, a deeper knowledge of the phenomena that influence the mixture formation and the chemical reactions involving new synthetic fuel components is mandatory, but complex and time intensive to perform purely by experimentation. Therefore, numerical simulations play an important role in this development process, but their use can be effective only if they can be considered accurate enough to capture these variations. The most relevant models necessary for the simulation of the reacting mixture formation and successive chemical reactions have been investigated in the present work, with a critical approach, in order to provide instruments to define the most suitable approaches also in the industrial context, which is limited by time constraints and budget evaluations. To overcome these limitations, new methodologies have been developed to conjugate detailed and simplified modelling techniques for the phenomena involving chemical reactions and mixture formation in non-traditional conditions (e.g. water injection, biofuels etc.). Thanks to the large use of machine learning and deep learning algorithms, several applications have been revised or implemented, with the target of reducing the computing time of some traditional tasks by orders of magnitude. Finally, a complete workflow leveraging these new models has been defined and used for evaluating the effects of different surrogate formulations of the same experimental fuel on a proof-of-concept GDI engine model.
Resumo:
The aim of the Ph.D. research project was to explore Dual Fuel combustion and hybridization. Natural gas-diesel Dual Fuel combustion was experimentally investigated on a 4-Stroke, 2.8 L, turbocharged, light-duty Diesel engine, considering four operating points in the range between low to medium-high loads at 3000 rpm. Then, a numerical analysis was carried out using a customized version of the KIVA-3V code, in order to optimize the diesel injection strategy of the highest investigated load. A second KIVA-3V model was used to analyse the interchangeability between natural gas and biogas on an intermediate operating point. Since natural gas-diesel Dual Fuel combustion suffers from poor combustion efficiency at low loads, the effects of hydrogen enriched natural gas on Dual Fuel combustion were investigated using a validated Ansys Forte model, followed by an optimization of the diesel injection strategy and a sensitivity analysis to the swirl ratio, on the lowest investigated load. Since one of the main issues of Low Temperature Combustion engines is the low power density, 2-Stroke engines, thanks to the double frequency compared to 4-Stroke engines, may be more suitable to operate in Dual Fuel mode. Therefore, the application of gasoline-diesel Dual Fuel combustion to a modern 2-Stroke Diesel engine was analysed, starting from the investigation of gasoline injection and mixture formation. As far as hybridization is concerned, a MATLAB-Simulink model was built to compare a conventional (combustion) and a parallel-hybrid powertrain applied to a Formula SAE race car.
Resumo:
The objective of the PhD thesis was to research technologies and strategies to reduce fuel consumption and pollutants emission produced by internal combustion engines. In order to meet this objective my activity was focused on the research of advanced controls based on cylinder pressure feedback. These types of control strategies were studied because they present promising results in terms of engine efficiency enhancement. In the PhD dissertation two study cases are presented. The first case is relative to a control strategy to be used at the test bench for the optimisation of the spark advance calibration of motorcycle Engine. The second case is relative to a control strategy to be used directly on board of mining engines with the objective or reducing the engine consumption and correct ageing effects. In both cases the strategies proved to be effective but their implementation required the use of specific toolchains for the measure of the cylinder pressure feedback that for a matter of cost makes feasible the strategy use only for applications: • At test bench • In small-markets like large off-road engines The major bottleneck that prevents the implementation of these strategies on mass production is the cost of cylinder pressure sensor. In order to tackle this issue, during the PhD research, the development of a low-cost sensor for the estimation of cylinder pressure was studied. The prototype was a piezo-electric washer designed to replace the standard spark-plug washer or high-pressure fuel injectors gasket. From the data analysis emerged the possibility to use the piezo-electric prototype signal to evaluate with accuracy several combustion metrics compatible for the implementation of advanced control strategies in on-board applications. Overall, the research shows that advanced combustion controls are feasible and beneficial, not only at the test bench or on stationary engines, but also in mass-produced engines.