1000 resultados para Film scoring
Resumo:
Ordered hexagonal droplets patterns in phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/PVP) formed due to the convection effect by solvent evaporation. The influences of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to PVP on the PVP-rich domains pattern formation and distributions were investigated by atomic force microscope (AFM). Only in an appropriate range of molecular weight of PS, can the ordered pattern form. Too low or too high molecular weight of PS led no ordered pattern due to the viscosity effects. The increase of solvent evaporation rate decreased the mean radius of the PVP-rich domains and the intervals between the centers of the domains due to the enhancement of the viscosity on the top layer of the fluid film. The increase of the weight ratio of PS to PVP decreased mean radius of the PVP-rich domains whereas the intervals between the centers of droplets remained constant. Therefore, the size and the distributions of ordered patterns can be tuned by the polymer molecular weight, the weight ratio of the two components and the solvent evaporation rate.
Resumo:
The dewetting process of thin polystyrene (PS) film with built-in ordered disturbance by capillary force lithography (CFL) has. been investigated in situ by AFM. Two different phenomena are observed depending on the excess surface energy (DeltaF(gamma)) of the system. When DeltaF(gamma) is less than a certain critical value (i.e., the disturbance amplitude is under a critical value), the PS film would be flattened and become stable finally by heating above T-g. While, if the size of the disturbance amplitude is larger than the critical value, ordered PS liquid droplets form by further dewetting. The pattern formation mechanisms and influencing factors have been discussed in detail.
Resumo:
The dewetting process of thin polystyrene (PS) film on flat and stripe-patterned substrates is presented. Different dewetting processes were observed when the thin PS films annealed at above the glass transition temperature on these different kinds of substrates. The final dewetting on the flat substrate led to formation of polygonal liquid droplets, while on the stripe-patterned substrate, the droplets were observed to align at the centers of the stripes. A possible explanation for the dewetting process on the stripe-patterned substrate is proposed.
Resumo:
The surface morphology evolution of three thin polystyrene (PS)/polymethyl methacrylate (PMMA) blend films (<70 nm) on SiOx substrates upon annealing were investigated by atomic force microscopy (AFM) and some interesting phenomena were observed. All the spin-coated PS/PMMA blend films were not in thermodynamic equilibrium. For the 67.1 and the 27.2 nm PS/PMMA blend films, owing to the low mobility of the PMMA-rich phase layer at substrate surfaces and interfacial stabilization caused by long-range van der Waals forces of the substrates, the long-lived metastable surface morphologies (the foam-like and the bicontinuous morphologies) were first observed. For the two-dimensional ultrathin PS/PMMA blend film (16.3 nm), the discrete domains of the PS-rich phases upon the PMMA-rich phase layer formed and the secondary phase separation occurred after a longer annealing time.
Resumo:
Rare earth ions (Eu3+ and Dy3+)-doped Gd-2(WO4)(3) phosphor films were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting powders and films. The results of XRD indicate that the films begin to crystallize at 600degreesC and the crystallinity increases with the elevation of annealing temperatures. The film is uniform and crack-free, WO(4)(2-)mainly consists of closely packed fine particles with an average grain size of 80 nm. Owing to an energy transfer from 4 groups, the rare earth ions show their characteristic emissions in crystalline Gd-2(WO4)(3) phosphor films, i.e., D-5(J) -F-7(J), (J = 0, 1, 2, 3; J' = 0 1, 2, 3, 4, not in all cases) transitions for Eu3+ and F-4(9/2)-H-6(J) (J = 13/2, 15/2) transitions for D Y3+, with the hypersensitive transitions D-5(0)-F-7(2) (Eu3+) and F-4(9/2) - H-6(13/2) (Dy3+) being the most prominent groups, respectively.
Resumo:
Bottom-contact organic thin-film transistors (BC OTFTs) based on inorganic/organic double gate insulators were demonstrated. The double gate insulators consisted of tantalum pentoxide (Ta2O5) with high dielectric constant (kappa) as the first gate insulator and octadecyltrichlorosilane (OTS) with low kappa as the second gate insulator. The devices have carrier mobilities larger than 10(-2) cm(2)/V s, on/off current ratio greater than 10(5), and the threshold voltage of -14 V, which is threefold larger field-effect mobility and an order of magnitude larger on/off current ratio than the OTFTs with a Ta2O5 gate insulator. The leakage current was decreased from 2.4x10(-6) to 7.4x10(-8) A due to the introduction of the OTS second dielectric layer. The results demonstrated that using inorganic/organic double insulator as the gate dielectric layer is an effective method to fabricate OTFTs with improved electric characteristics.
Resumo:
Organic thin-film transistors (OTFTs) having source/drain electrodes sandwiched between copper phthalocyanine (CuPc) and cobalt phthalocyanine (CoPc) layers, CuPc/CoPc SC OTFTs, are investigated. Comparing their properties with that of CuPc-based top-contact OTFT, field-effect mobility increases from 0.04 to 0.11 cm(2)/Vs, threshold voltage shifts from -13.8 to -8.9 V, and the current on/off ratio maintains at a level of 10(5). A top-contact OTFT with a layer of CuPc and a layer of CoPc (10%)-CuPc mixture reveals that the combination of CuPc and CoPc enhances charge injection from the source electrode into the active layer and increases the off-state current. The sandwich configuration increases the field-effect mobility, reduce the threshold voltage, and improve the on/off ratio at the same time. Our results indicate that using a double-layer of active organic materials in sandwich configuration is an effective way to improve OTFT performance.
Resumo:
In this paper we report the rational design and fabrication of high-quality core-shell Au-Pt nanoparticle film. Such film shows highly efficient catalytic properties and excellent surface-enhanced Raman scattering (SERS) ability.
Resumo:
A bilayer CdS/ITO film was obtained. The dipped CdS was grown by an ultrasonic colloid deposition (USCD) method. Microstructure of the CdS film made by USCD has a wider transmission range and a higher transmittance. Amorphous indium-tin-oxide (ITO) thin film was deposited using d.c. magnetron-sputtering at room temperature. The ITO films exhibited good conductivity and maximum transmittance of 94%. The CdS/ITO bilayer was investigated by means of GIXD (grazing incidence X-ray diffraction) at different incidence angles (alpha = 0.20-5.00degrees) and XRD. We discuss a model for the thin bilayer film. SEM and AFM show that homogeneous CdS films with a bar-shaped ultrafine particles and ITO film with nanometer structure. The mechanism of the bilayer CdS/ITO film is discussed.
Resumo:
Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.
Resumo:
A responsive polymer composite film was generated by the use of reversibly switchable Surface morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films in response to different block selective solvents on the rough isotactic poly(propylene) (i-PP) substrate. The Maximum difference of the water contact angle of the composite films increased from 22.6 degrees of PS-b-PMMA films on the smooth substrate to 42.6 degrees when they were treated by PS and PMMA selective solvents, respectively. The mechanisms of the responsive extent enhanced and the superhydrophobicity of the composite films were discussed in detail.
Resumo:
A polymeric supramolecule consisting of symmetric polystyrene-block-poly(4-vinylpytidine) (PS-b-P4VP), dodecylbenzenesulfonic acid (DBSA), and 3-pentadecylphenol (PDP) was formed by proton transfer and hydrogen bonding. The surface morphology,of a thin film of the polymeric supramolecule has been investigated. The spherical PS microdomains embedded in a P4VP(DBSA)(1.0)(PDP)(1.0) matrix are observed for the as-cast film because the weight fraction, f(comb), of the P4VP(DBSA) (1.0)(PDP)(1.0) blocks is much higher than that of PS as a result of the non-covalent interactions of P4VP and DBSA and DBSA and PDR Upon annealing the PS-b-P4VP(1:1)(DBSA)(1.0)(PDP)(1.0) film at high temperatures, the hydrogen bonding between the DBSA and PDP diminishes, which leads to a change of overall morphology from an ordered sphere to a pitted structure.
Resumo:
A composite film composed of porous polyurethane (PU) and polystyrene (PS) microspheres with both superhydrophobicity and superoleophilicity has been prepared. In this film, the dual-scale structure enhances both the hydrophobicity and oleophilicity of the surface material. The composite film with such an 'intelligent' wettability property can be utilized to separate oil and water systems efficiently.
Resumo:
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: -0.2 V) was from 1.67 x 10(-5) to 7.40 x 10(-4) M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.