994 resultados para Figure de Kanizsa
Resumo:
Catalog of an exhibition held at the Patricia and Phillip Frost Art Museum, Florida International University. Curated by Carol Damian.
Resumo:
We investigated controls on the water chemistry of a South Ecuadorian cloud forest catchment which is partly pristine, and partly converted to extensive pasture. From April 2007 to May 2008 water samples were taken weekly to biweekly at nine different subcatchments, and were screened for differences in electric conductivity, pH, anion, as well as element composition. A principal component analysis was conducted to reduce dimensionality of the data set and define major factors explaining variation in the data. Three main factors were isolated by a subset of 10 elements (Ca2+, Ce, Gd, K+, Mg2+, Na+, Nd, Rb, Sr, Y), explaining around 90% of the data variation. Land-use was the major factor controlling and changing water chemistry of the subcatchments. A second factor was associated with the concentration of rare earth elements in water, presumably highlighting other anthropogenic influences such as gravel excavation or road construction. Around 12% of the variation was explained by the third component, which was defined by the occurrence of Rb and K and represents the influence of vegetation dynamics on element accumulation and wash-out. Comparison of base- and fast flow concentrations led to the assumption that a significant portion of soil water from around 30 cm depth contributes to storm flow, as revealed by increased rare earth element concentrations in fast flow samples. Our findings demonstrate the utility of multi-tracer principal component analysis to study tropical headwater streams, and emphasize the need for effective land management in cloud forest catchments.
Resumo:
137Cs and 134Cs as compounds of the radioactive release from the reactor catastrophy of Chernobyl on the 26.04.1986 were deposited into sediments of lakes in Schleswig-Holstein (Germany). Three years later, in autumn 1989, a sediment core was taken from the Großer Plöner See and the distribution of both caesium isotopes was determined. The radiocaesium profiles were dated by 210Pb. The radiocaesium nuclides from Chernobyl diffused into sediment layers which were deposited decades before the catastrophy. The activity of 137Cs from Chernobyl was higher than from the nuclear bomb fallout.