986 resultados para Fibroblastes associés au cancer
Resumo:
Introduction Novel imaging techniques for prostate cancer (PCa) are required to improve staging and real-time assessment of therapeutic response. We performed preclinical evaluation of newly-developed, biocompatible magnetic nanoparticles (MNPs) conjugated with J591, an antibody specific for prostate specific membrane antigen (PSMA), to enhance magnetic resonance imaging (MRI) of PCa. PSMA is expressed on ∼90% of PCa, including those that are castrate-resistant, rendering it as a rational target for PCa imaging. Materials and Methods The specificity of J591 for PSMA was confirmed by flow cytometric analysis of several PCa cell lines of known PSMA status. MNPs were prepared, engineered to the appropriate size, labeled with DiR fluorophore, and their toxicity to a panel of PC cells was assessed by in vitro Alamar Blue assay. Immunohistochemistry, fluorescence microscopy and Prussian Blue staining (iron uptake) were used to evaluate PSMA specificity of J591-MNP conjugates. In vivo MRI studies (16.4T MRI system) were performed using live immunodeficient mice bearing orthotopic LNCaP xenografts and injected intravenously with J591-MNPs or MNPs alone. Results MNPs were non-toxic to PCa cells. J591-MNP conjugates showed no compromise in specificity of binding to PSMA+ cells and showed enhanced iron uptake compared with MNPs alone. In vivo, tumour targeting (significant MR image contrast) was evident in mice injected with J591-MNPs, but not MNPs alone. Resected tumours from targeted mice had an accumulation of MNPs, not seen in normal control prostate. Conclusions Application of PSMA-targeting MNPs into conventional MRI has potential to enhance PCa detection and localization in real-time, improving patient management.
Resumo:
Head and neck squamous cell carcinoma (HNSCC) accounts for a bulk of the oral and laryngeal cancers, the majority (70%) of which are associated with smoking and excessive drinking, major known risk factors for the development of HNSCC. In contrast to reports that suggest an inverse relationship between smoking and global DNA CpG methylation, hypermethylation of promoters of a number of genes was detected in saliva collected from patients with HNSCC. Using a sensitive methylation-specific polymerase chain reaction (MSP) assay to determine specific methylation events in the promoters of RASSF1A, DAPK1, and p16 genes, we demonstrate that we can detect tumor presence with an overall accuracy of 81% in the DNA isolated from saliva of patients with HNSCC (n = 143) when compared with the DNA isolated from the saliva of healthy nonsmoker controls (n = 31). The specificity for this MSP panel was 87% and the sensitivity was 80%(with a Fisher exact test P < .0001). In addition, the test panel performed extremely well in the detection of the early stages of HNSCCs, with a sensitivity of 94% and a specificity of 87%, and a high. concordance value of 0.8, indicating an excellent overall agreement between the presence of HNSCC and a positive MSP panel result. In conclusion, we demonstrate that the promoter methylation of RASSF1A, DAPK1, and p16 MSP panel is useful in detecting hypermethylation events in a noninvasive manner in patients with HNSCC.
Resumo:
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cause of cancer mortality in the world and the 5th most commonly occurring cancer. Tobacco smoking, alcohol consumption and human papilloma virus (HPV) infections have been associated with the occurrence of HNSCC. Despite advances that have been made in HNSCC treatment, smoking-associated HNSCC patients still exhibit a poor 5 year survival rate (30-50 %) and a concomitant poor quality of life. The major clinical challenge to date lies in the early detection of dysplastic lesions,which can progress to malignancy. In addition, there are currently no tools available to monitor HNSCC patients for early stages of local recurrences or distant metastases. In the recent past, micro-RNAs (miRNA) have been assessed for their role in cancer initiation and progression, including HNSCC. It is now well-established that deregulation of these single stranded, small non-coding, 19-25 nt RNAs can e.g. enhance the expression of oncogenes or subdue the expression of tumor suppressor genes. The aims of this review are three-fold: first to retrieve from the literature miRNAs that have specifically been associated with HNSCC, second to group these miRNAs into those regulating tumor initiation, progression and metastasis, and third to discern miRNAs related to smoking-associated HNSCC versus HPV-associated HNSCC development. This review gives an overview on the miRNAs regulating the development of head and neck cancers. The ultimate establishment of miRNA expression profiles that are HNSCC specific, and miRNAs that orchestrate altered gene and protein expression levels in HNSCC, could pave the way for a better understanding of the mechanism underlying its pathogenesis and the development of novel, targeted therapies.
Resumo:
To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines in advanced disease, earlystage disease and locally advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on early-stage disease. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved.
Resumo:
To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines in advanced disease, early stage disease and locally-advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on 1st line / 2nd and further lines of treatment in advanced disease. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved.
Resumo:
Research studies aimed at advancing cancer prevention, diagnosis, and treatment depend on a number of key resources, including a ready supply of high-quality annotated biospecimens from diverse ethnic populations that can be used to test new drugs, assess the validity of prognostic biomarkers, and develop tailor-made therapies. In November 2011, KHCCBIO was established at the King Hussein Cancer Center (KHCC) with the support of Seventh Framework Programme (FP7) funding from the European Union (khccbio.khcc.jo). KHCCBIO was developed for the purpose of achieving an ISO accredited cancer biobank through the collection, processing, and preservation of high-quality, clinically annotated biospecimens from consenting cancer patients, making it the first cancer biobank of its kind in Jordan. The establishment of a state-of-the-art, standardized biospecimen repository of matched normal and lung tumor tissue, in addition to blood components such as serum, plasma, and white blood cells, was achieved through the support and experience of its European partners, Trinity College Dublin, Biostor Ireland, and accelopment AG. To date, KHCCBIO along with its partners, have worked closely in establishing an ISO Quality Management System (QMS) under which the biobank will operate. A Quality Policy Manual, Validation, and Training plan have been developed in addition to the development of standard operating procedures (SOPs) for consenting policies on ethical issues, data privacy, confidentiality, and biobanking bylaws. SOPs have also been drafted according to best international practices and implemented for the donation, procurement, processing, testing, preservation, storage, and distribution of tissues and blood samples from lung cancer patients, which will form the basis for the procurement of other cancer types. KHCCBIO will be the first ISO accredited cancer biobank from a diverse ethnic Middle Eastern and North African population. It will provide a unique and valuable resource of high-quality human biospecimens and anonymized clinicopathological data to the cancer research communities world-wide.
Resumo:
The role of exosomes in cancer development has become the focus of much research, due to the many emerging roles possessed by exosomes. These micro-vesicles that are ubiquitously released in to the extracellular milieu, have been found to regulate immune system function, particularly in tumorigenesis, as well as conditioning future metastatic sites for the attachment and growth of tumor tissue. Through an interaction with a range of host tissue, exosomes are able to generate a pro-tumor environment that is essential for carcinogenesis. Herein, we discuss the contents of exosomes and their contribution to tumorigenesis, as well as their role in chemotherapeutic resistance and the development of novel cancer treatments and the identification of cancer biomarkers.
Resumo:
The prognosis of epithelial ovarian cancer is poor in part due to the high frequency of chemoresistance. Recent evidence points to the Toll-like receptor-4 (TLR4), and particularly its adaptor protein MyD88, as one potential mediator of this resistance. This study aims to provide further evidence that MyD88 positive cancer cells are clinically significant, stem-like and reproducibly detectable for the purposes of prognostic stratification. Expression of TLR4 and MyD88 was assessed immunohistochemically in 198 paraffin-embedded ovarian tissues and in an embryonal carcinoma model of cancer stemness. In parallel, expression of TLR4 and MyD88 mRNA and regulatory microRNAs (miR-21 and miR-146a) was assessed, as well as in a series of chemosensitive and resistant cancer cells lines. Functional analysis of the pathway was assessed in chemoresistant SKOV-3 ovarian cancer cells. TLR4 and MyD88 expression can be reproducibly assessed via immunohistochemistry using a semi-quantitative scoring system. TLR4 expression was present in all ovarian epithelium (normal and neoplastic), whereas MyD88 was restricted to neoplastic cells, independent of tumour grade and associated with reduced progression-free and overall survival, in an immunohistological specific subset of serous carcinomas, p<0.05. MiR-21 and miR-146a expression was significantly increased in MyD88 negative cancers (p<0.05), indicating their participation in regulation. Significant alterations in MyD88 mRNA expression were observed between chemosensitive and chemoresistant cells and tissue. Knockdown of TLR4 in SKOV-3 ovarian cells recovered chemosensitivity. Knockdown of MyD88 alone did not. MyD88 expression was down-regulated in differentiated embryonal carcinoma (NTera2) cells, supporting the MyD88+ cancer stem cell hypothesis. Our findings demonstrate that expression of MyD88 is associated with significantly reduced patient survival and altered microRNA levels and suggest an intact/functioning TLR4/MyD88 pathway is required for acquisition of the chemoresistant phenotype. Ex vivo manipulation of ovarian cancer stem cell (CSC) differentiation can decrease MyD88 expression, providing a potentially valuable CSC model for ovarian cancer.
Resumo:
The global landscape of molecular testing is rapidly changing, with the recent publication of the International Association for the Study of Lung Cancer (IASLC)/College of American Pathologists (CAP) guidelines and the ALK Atlas. The IASLC/CAP guidelines recommend that tumors from patients with non-small cell lung cancer (NSCLC) be tested for ALK rearrangements in addition to epidermal growth factor receptor (EGFR) mutations. The spur for this recommendation is the availability of novel therapies that target these rearrangements. This article is based on coverage of a Pfizer-sponsored National Working Group Meeting on ALK Diagnostics in Lung Cancer, held around the 15th World Lung Cancer Conference, in Sydney on October 31, 2013. It is based on the presentations given by the authors at the meeting and the discussion that ensued. The content for this article was discussed and agreed on by the authors.
Resumo:
Background The MAGIC/UK Medical Research Council (MRC) trial set the standard of care for treatment of resectable gastric and junctional adenocarcinoma, demonstrating that perioperative chemotherapy with epirubicin, cisplatin and 5-fluorouracil (ECF) confers a survival benefit over surgery alone. The randomized ECF for advanced and locally advanced esophagogastric cancer (REAL-2) trial showed that, in the metastatic setting, the EOX regimen (epirubicin, oxaliplatin and capecitabine) is as effective as ECF, with a favourable toxicity profile. Methods Consecutive patients with resectable gastric or junctional adenocarcinoma treated with perioperative EOX, between 2007 and 2012, were retrospectively analysed. Results Fifty-nine patients (12 female, 47 male), commenced EOX therapy; 47 underwent surgery. A good pathological response was seen in 34 %, (16/47). Disease recurrence occurred in 19 patients (19/47, 40 %). Median overall survival was 22 months, with 4-year survival of 47 %. Chemotoxicities were consistent with those previously reported for this regimen. Conclusion This study in a high-volume centre demonstrates that EOX in resectable gastric and junctional adenocarcinoma is associated with a reasonable safety profile, and efficacy consistent with that reported for ECF.
Resumo:
INTRODUCTION: The phase III FLEX study (NCT00148798) in advanced non-small-cell lung cancer indicated that the survival benefit associated with the addition of cetuximab to cisplatin and vinorelbine was limited to patients whose tumors expressed high levels of epidermal growth factor receptor (EGFR) (immunohistochemistry score of >/=200; scale 0-300). We assessed whether the treatment effect was also modulated in FLEX study patients by tumor EGFR mutation status. METHODS: A tumor mutation screen of EGFR exons 18 to 21 included 971 of 1125 (86%) FLEX study patients. Treatment outcome in low and high EGFR expression groups was analyzed across efficacy endpoints according to tumor EGFR mutation status. RESULTS: Mutations in EGFR exons 18 to 21 were detected in 133 of 971 tumors (14%), 970 of which were also evaluable for EGFR expression level. The most common mutations were exon 19 deletions and L858R (124 of 133 patients; 93%). In the high EGFR expression group (immunohistochemistry score of >/=200), a survival benefit for the addition of cetuximab to chemotherapy was demonstrated in patients with EGFR wild-type (including T790M mutant) tumors. Although patient numbers were small, those in the high EGFR expression group whose tumors carried EGFR mutations may also have derived a survival benefit from the addition of cetuximab to chemotherapy. Response data suggested a cetuximab benefit in the high EGFR expression group regardless of EGFR mutation status. CONCLUSIONS: The survival benefit associated with the addition of cetuximab to first-line chemotherapy for advanced non-small-cell lung cancer expressing high levels of EGFR is not limited by EGFR mutation status.