1000 resultados para Fiberboard industry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the autoaggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Portugal has been the world leader in the cork sector in terms of exports, employing ten thousands of workers. In this working activity, the permanent contact with cork may lead to the exposure to fungi, raising concerns as potential occupational hazards in cork industry. The application of molecular tools is crucial in this setting, since fungal species with faster growth rates may hide other species with clinical relevance, such as species belonging to P. glabrum and A. fumigatus complexes. A study was developed aiming at assessing fungal contamination due to Aspergillus fumigatus complex and Penicillium glabrum complex by molecular methods in three cork industries in the outskirt of Lisbon city.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Janssen-Cilag proposal for a risk-sharing agreement regarding bortezomib received a welcome signal from NICE. The Office of Fair Trading report included risk-sharing agreements as an available tool for the National Health Service. Nonetheless, recent discussions have somewhat neglected the economic fundamentals underlying risk-sharing agreements. We argue here that risk-sharing agreements, although attractive due to the principle of paying by results, also entail risks. Too many patients may be put under treatment even with a low success probability. Prices are likely to be adjusted upward, in anticipation of future risk-sharing agreements between the pharmaceutical company and the third-party payer. An available instrument is a verification cost per patient treated, which allows obtaining the first-best allocation of patients to the new treatment, under the risk sharing agreement. Overall, the welfare effects of risk-sharing agreements are ambiguous, and care must be taken with their use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, at both upstream and downstream of the production process, namely: i) Adoption of a new heating system for pultrusion die-tool in the manufacturing process, more effective and with minor heat losses; ii) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The main aims of this work were the study of cork slabs moulds colonization and the evaluation of the moulds diversity during cork processing steps, in different cork stoppers factories. Simultaneously, it was envisaged to perform an evaluation of the air quality. Methods and Results: Moulds were isolated and identified from cork slabs and cork samples in four cork stoppers factories. The identification was based on morphological characters and microscopic observation of the reproductive structures. Airborne spore dispersion was assessed using a two stage Andersen sampler. It was observed that Chrysonilia sitophila was always present on cork slabs during the maturing period, but mould diversity appeared to be associated to the different factory configurations and processing steps. Conclusions: Spatial separation of the different steps of the process, including physical separation of the maturation step, is essential to guarantee high air quality and appropriate cork slabs colonization, i.e. C. sitophila dominance. The sorting and cutting of the edges of cork slabs after boiling and before the maturing step is also recommended. Significance and Impact of the Study: This study is very important for the cork stopper industry as it gives clear indications on how to keep high quality manufacturing standards and how to avoid occupational health problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent ecoefficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the potential eco-efficiency performance of a pultrusion manufacturing company was assessed. Indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures in the production process of glass fibre reinforced polymers (GFRP) pultrusion profiles. Two different approaches were foreseen: 1)Adoption of a new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; and 2) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The World Business Council for Sustainable Development (WBCSD) defines Eco-Efficiency as follows: ‘Eco- Efficiency is achieved by the delivery of competitively priced-goods and services that satisfy human needs and bring quality of life, while progressively reducing ecological impacts and resource intensity throughout the life-cycle to a level at least in line with the earth’s estimated carrying capacity’. Eco-Efficiency is under this point of view a key concept for sustainable development, bringing together economic and ecological progress. Measuring the Eco-Efficiency of a company, factory or business, is a complex process that involves the measurement and control of several and relevant parameters or indicators, globally applied to all companies in general, or specific according to the nature and specificities of the business itself. In this study, an attempt was made in order to measure and evaluate the eco-efficiency of a pultruded composite processing company. For this purpose the recommendations of WBCSD [1] and the directives of ISO 14301 standard [2] were followed and applied. The analysis was restricted to the main business branch of the company: the production and sale of standard GFRP pultrusion profiles. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined according to ISO 14031 recommendations. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and ecoefficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; b) Implementation of new software for stock management (raw materials and final products) that minimize production failures and delivery delays to final consumer; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. In particular, the last approach seems to significantly improve the eco-efficient performance of the company. Currently, by-products and wastes generated in the manufacturing process of GFRP profiles are landfilled, with supplementary added costs to this company traduced by transport of scrap, landfill taxes and required test analysis to waste materials. However, mechanical recycling of GFRP waste materials, with reduction to powdered and fibrous particulates, constitutes a recycling process that can be easily attained on heavy-duty cutting mills. The posterior reuse of obtained recyclates, either into a close-looping process, as filler replacement of resin matrix of GFRP profiles, or as reinforcement of other composite materials produced by the company, will drive to both costs reduction in raw materials and landfill process, and minimization of waste landfill. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Risk assessment is one of the main pillars of the framework directive and other directives in respect of health and safety. It is also the basis of an effective management of safety and health as it is essential to reduce work-related accidents and occupational diseases. To survey the hazards eventually present in the workplaces the usual procedures are i) gathering information about tasks/activities, employees, equipment, legislation and standards; ii) observation of the tasks and; iii) quantification of respective risks through the most adequate risk assessment among the methodologies available. From this preliminary evaluation of a welding plant and, from the different measurable parameters, noise was considered the most critical. This paper focus not only the usual way of risk assessment for noise but also another approach that may allow us to identify the technique with which a weld is being performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: crosslinked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in “Biology” at the Institute of Chemical and Biological Technology of the New University of Lisbon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent Advances in Mechanics and Materials in Design

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes the full research proposal for the project \Balancing and lot-sizing mixed-model lines in the footwear industry", to be developed as part of the master program in Engenharia Electrotécnica e de Computadores - Sistemas de Planeamento Industrial of the Instituto Superior de Engenharia do Porto. The Portuguese footwear industry is undergoing a period of great development and innovation. The numbers speak for themselves, Portugal footwear exported 71 million pairs of shoes to over 130 countries in 2012. It is a diverse sector, which covers different categories of women, men and children shoes, each of them with various models. New and technologically advanced mixed-model assembly lines are being projected and installed to replace traditional mass assembly lines. Obviously there is a need to manage them conveniently and to improve their operations. This work focuses on balancing and lot-sizing stitching mixed-model lines in a real world environment. For that purpose it will be fundamental to develop and evaluate adequate effective solution methods. Different objectives may be considered, which are relevant for the companies, such as minimizing the number of workstations, and minimizing the makespan, while taking into account a lot of practical restrictions. The solution approaches will be based on approximate methods, namely by resorting to metaheuristics. To show the impact of having different lots in production the initial maximum amount for each lot is changed and a Tabu Search based procedure is used to improve the solutions. The developed approaches will be evaluated and tested. A special attention will be given to the solution of real applied problems. Future work may include the study of other neighbourhood structures related to Tabu Search and the development of ways to speed up the evaluation of neighbours, as well as improving the balancing solution method.