998 resultados para FLUX RATES
C14 uptake rates and chlorophyll content from incubation experiment L1C016 at station DI182_11864#41
C14 uptake rates and chlorophyll content from incubation experiment L1C018 at station DI182_11864#43
C14 uptake rates and chlorophyll content from incubation experiment L2C003 at station DI183_11869#29
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-7/13-1
Resumo:
High density lipoproteins (HDLs) play a role in two processes that include the amelioration of atheroma formation and the centripetal flow of cholesterol from the extrahepatic organs to the liver. This study tests the hypothesis that the flow of sterol from the peripheral organs to the liver is dependent upon circulating HDL concentrations. Transgenic C57BL/6 mice were used that expressed variable amounts of simian cholesteryl ester-transfer protein (CETP). The rate of centripetal cholesterol flux was quantitated as the sum of the rates of cholesterol synthesis and low density lipoprotein-cholesterol uptake in the extrahepatic tissues. Steady-state concentrations of cholesterol carried in HDL (HDL-C) varied from 59 to 15 mg/dl and those of apolipoprotein AI from 138 to 65 mg/dl between the control mice (CETPc) and those maximally expressing the transfer protein (CETP+). There was no difference in the size of the extrahepatic cholesterol pools in the CETPc and CETP+ animals. Similarly, the rates of cholesterol synthesis (83 and 80 mg/day per kg, respectively) and cholesterol carried in low density lipoprotein uptake (4 and 3 mg/day per kg, respectively) were virtually identical in the two groups. Thus, under circumstances where the steady-state concentration of HDL-C varied 4-fold, the centripetal flux of cholesterol from the peripheral organs to the liver was essentially constant at approximately 87 mg/day per kg. These studies demonstrate that neither the concentration of HDL-C or apolipoprotein AI nor the level of CETP activity dictates the magnitude of centripetal cholesterol flux from the extrahepatic organs to the liver, at least in the mouse.
Resumo:
We have generated approx. 300 Kyr records of biogenic opal, calcite, and organic carbon (Corg) for three cores in the eastern and central equatorial Pacific Ocean and have compared the records to determine whether common periods of biogenic sedimentation have occurred throughout the region. We find that Corg has been deposited in common pulses throughout the area, while opal has a much more local pattern of variation. Calcite varies regionally, but the record is shaped by superimposed dissolution and productivity processes. The most intense Corg peak occurs at 18 ka and can have greater than 2 times the Holocene Corg content. Other major Corg peaks occur 150 ka and perhaps at 280 ka. We have compared the Corg record in one of the cores, V19-28, to a model deepwater oxygen record developed from d13C data in the nearby V19-30 to test whether the Corg record has been mostly shaped by degradation or by the rain of organic matter from the euphotic zone. We found no coherence between the two records, implying that the Corg record is primarily a measure of productivity. By comparing the opal, calcite, and Corg records in V19-28, a core which is at or above the lysocline, we found that both increased calcite and opal deposition matches high Corg accumulation. We also found, however, that the calcite and opal records were uncorrelated, so that episodes of high opal deposition do not necessarily accumulate calcite rapidly. We hypothesize that at least two different plankton communities have been dominant in the waters above this site, one rich in opal-secreting plankton and one more dominated by calcite producers. The opal-rich plankton community was dominant during the intervals 10-15 ka and 35-60 ka.