992 resultados para FECAL DEPOSITS HYRACEUM
Resumo:
The cores described in this report were taken during the R/V Robert Conrad Cruise 06 from May until June 1963 by the Lamont Geological Observatory, Columbia University. A total of 5 cores were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
The cores described were taken by the personnel of the Lamont-Doherty Earth Observatory (LDEO) operating as guests scientists during the R/V Atlantis Cruise 179 undertaken by the Woods Hole Oceanographic Institution from April until May 1952. A total of 25 cores were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
The cores and dredges described in this report were taken during the VEMA 5 Expedition from November until December 1954 by the Lamont Geological Observatory, Columbia University from the R/V Vema. A total of 48 cores were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
The cores described were taken by the personnel of the Lamont-Doherty Earth Observatory (LDEO) operating as guests scientists during the R/V Atlantis Cruise 164 undertaken by the Woods Hole Oceanographic Institution from July until September 1950. A total of 63 cores were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
The cores described in this list were taken on the RE05 Expedition in March 1950 by the Lamont-Doherty Earth Observatory from the R/V Rehoboth. A total of 13 cores were recovered and are available at LDEO for sampling and study.
Resumo:
The cores and dredges described in this report were taken during the VEMA 4 Expedition from July until September 1954 by the Lamont Geological Observatory, Columbia University from the R/V Vema. A total of 54 cores were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
The cores described were taken by the personnel of the Lamont-Doherty Earth Observatory (LDEO) operating as guests scientists during the R/V Atlantis Cruise 180 undertaken by the Woods Hole Oceanographic Institution from July until October 1952. A total of 118 cores were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
The cores described were taken by the personnel of the Lamont-Doherty Earth Observatory (LDEO) operating as guests scientists during the R/V Atlantis Cruise 185 undertaken by the Woods Hole Oceanographic Institution from April until June 1953. A total of 65 cores were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
GIA acknowledges funding from the Carnegie Trust to undertake fieldwork for this project. SM acknowledges the Israel Science Foundation (ISF grant no. 1436/14) and the Ministry of National Infrastructures, Energy and Water Resources (grant no. #214-17-027). RW was supported by the Israel Science Foundation (ISF grant no. 1245/11). We thank Hugo Ortner and Pedro Alfaro for careful and constructive reviews.
Resumo:
Peer reviewed
Resumo:
From: Ventra, D. & Clarke, L. E. (eds) Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrial and Planetary Perspectives. Geological Society, London, Special Publications, 440, http://doi.org/10.1144/SP440.8 # 2016 The Author(s). Published by The Geological Society of London. All rights reserved
Resumo:
DSDP 160 forms part of a series of sites in the eastern equatorial Pacific on the west flank of the East Pacific Rise. Earlier legs of the Deep Sea Drilling Project, in particular Legs 5 and 9, have reported sediments rich in oxides of iron and perhaps other transition metals just above basement in the eastern Pacific. These occurrences roughly define a broad zone on the west flank of the rise. Site DSDP 160 lies on this trend and were selected by the Pacific Site Selection Panel to test the extent of such deposits.
Resumo:
A University of Hawaii oceanographic cruise, Abyssal Hills 69, with the R/V Mahi, was carried out to study the association of manganese nodules with an abyssal hill. Manganese nodules from three dredge hauls on an abyssal hill located at 36°W and 157°W exhibited differences in morphology and composition between stations only three miles apart. The morphology of the nodules suggests that nodules from a single site have similar morphologies because they began growth at the same time, probably because of a volcanic event. Differences in morphology between stations indicate a local supply of elements. Atomic absorption analysis for manganese, iron, cobalt, nickel, and copper revealed that nodules nearest to a probable fault line and source of volcanism have a, lower manganese to iron ratio than nodules farther removed. This finding supports the theory that volcanism contributes to the formation of some nodules. Additional evidence showing association with volcanism consists of volcanic nuclei in nodules, crusts formed on layers of volcanic ash, and basalt encrusted to various degrees. The variation in cobalt, nickel, and copper contents Gt the nodules from a single dredge is two-to threefold, but iron content is more uniiorm. Four of the six cores from the area increased in manganese concentration with depth, suggesting that diffusion is concentrating manganese in the upper zone of the sediments or in nodules. The author concludes that volcanism is contributing to the formation of nodules by supplying nuclei and transition elements, but is not necessary for the formation of manganese nodules.
Resumo:
DSDP 161 is located on the lower west flank of the East Pacific Rise about midway between the Clipperton and Clarion fracture zones which define the boundaries of a large structural block in the eastern Pacific. The site is about 4,000 km west of the present crest of the Rise. It is located near the northern edge of a zone of thick Cenozoic sediments which marks the general location of the equatorial zone of high biological productivity.