1000 resultados para ErCr:YSGG laser
Resumo:
The effect of laser fluence on the crystallization of amorphous silicon irradiated by a frequency-doubled Nd:YAG laser is studied both theoretically and experimentally. An effective numerical model is set up to predict the melting threshold and the optimized laser fluence for the crystallization of 200-nm-thick amorphous silicon. The variation of the temperature distribution with time and the melt depth is analyzed. Besides the model, the Raman spectra of thin films treated with different fluences are measured to confirm the phase transition and to determine the optimized fluence. The calculating results accord well with those obtained from the experimental data in this research. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The pulse-shaping technique has found widespread applications in nonlinear optics and material processing. Experimental research on laser-induced plasma shutter to control the 532 nm pulse width is conducted. The impacts of the total pulse output energy on pulse compression are investigated, and a useful conclusion can be drawn that there exists an optimal value of pulse energy at which the shortest output pulse of 3.23 ns can be obtained without a device for delay-time. Once the device for delay-time is employed to change the optical differences between two laser paths, the pulse width can be further shortened to 1.51 ns. In short, the 1.5-12 ns width-tunable 532 nm laser pulses have been obtained by adopting the laser-induced plasma shutter technique. (C) 2007 Elsevier GmbH. All rights reserved.
Generation of 1.5–12ns width-tunable 532nm pulses by adopting laser-induced plasma shutter technique