991 resultados para Epithelial hyperplasia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intestinal mucosa is the first biological barrier encountered by natural toxins, and could possibly be exposed to high amounts of dietary mycotoxins. Patulin (PAT), a mycotoxin produced by Penicillium spp. during fruit spoilage, is one of the best known enteropathogenic mycotoxins able to alter functions of the intestine (Maresca et al., 2008). This study evaluated the effects of PAT on barrier function of the gut mucosa utilizing the intestinal epithelial cell model Caco-2, and scrutinized immunomodulatory effects using human peripheral blood mononuclear cells (PBMC) and human blood monocyte-derived dendritic cells (moDCs) as test systems. PAT exposure reduced Caco-2 cell viability at concentrations above 12 mM. As expected, the integrity of a polarized Caco-2 monolayer was affected by PAT exposure, as demonstrated by a decrease in TER values, becoming more pronounced at 50 mM. No effects were detected on the expression levels of the tight junction proteins occludin, claudin-1 and claudin-3 at 50 mM. However, the expression of zonula occludens-1 (ZO-1) and myosin light chain 2 (MLC2) declined. Also, levels of phospho-MLC2 (p-MLC2) increased after 24 h of exposure to 50 mM of PAT. T cell proliferation was highly sensitive to PAT with major effects for concentrations above 10 nM of PAT. The same conditions did not affect the maturation of moDC. PAT causes a reduction in Caco-2 barrier function mainly by perturbation of ZO-1 levels and the phosphorylation of MLC. Low doses of PAT strongly inhibited T cell proliferation induced by a polyclonal activator, but had no effect on the maturation of moDC. These results provide new information that strengthens the concept that the epithelium and immune cells of the intestinal mucosa are important targets for the toxic effects of food contaminants like mycotoxins

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppressor of cytokine signalling 3 (SOCS3) is a potent inhibitor of the mitogenic, migratory and pro-inflammatory pathways responsible for the development of neointimal hyperplasia (NIH), a key contributor to the failure of vascular reconstructive procedures. However, the protein levels of SOCS3, and therefore its potential to reduce NIH, is limited by its ubiquitylation and high turnover by the proteasome. I hypothesised that stabilisation of endogenous SOCS3 by inhibiting its ubiquitylation has the potential to limit vascular inflammation and NIH. Consequently, the aim of this PhD was to identify the mechanisms promoting the rapid turnover of SOCS3. Initial experiments involved the identification of residues involved in regulating the turnover of SOCS3 at the proteasome. I assessed the ubiquitylation status of a panel of FLAG tagged SOCS3 truncation mutants and identified a C-terminal 44 amino acid region required for SOCS3 ubiquitylation. This region localised to the SOCS box which is involved in binding Elongin B/C and the formation of a functional E3 ubiquitin ligase complex. However, the single lysine residue at position 173, located within this 44 amino acid region, was not required for ubiquitylation. Moreover, Emetine chase assays revealed that loss of either Lys173 or Lys6 (as documented in the literature) had no significant effect on SOCS3 stability 8 hrs post emetine treatment. As mutagenesis studies failed to identify key sites of ubiquitylation responsible for targeting SOCS3 to the proteasome, LC-MS-MS analysis of a SOCS3 co-immunoprecipitate was employed. These data were searched for the presence of a Gly-Gly doublet (+114 Da mass shift) and revealed 8 distinct sites of ubiquitylation (Lys23, Lys28, Lys40, Lys85, Lys91, Lys173, Lys195, Lys206) on SOCS3 however Lys6 ubiquitylation was not detected. As multiple Lys residues were ubiquitylated, I hypothesised that only a Lys-less SOCS3, in which all 8 Lys residues were mutated to Arg, would be resistant to ubiquitylation. Compared to WT SOCS3, Lys-less SOCS3 was indeed found to be completely resistant to ubiquitylation, and significantly more stable than WT SOCS3. These changes occurred in the absence of any detrimental effect on the ability of Lys-less SOCS3 to interact with the Elongin B/C components required to generate a functional E3 ligase complex. In addition, both WT and Lys-less SOCS3 were equally capable of inhibiting cytokine-stimulated STAT3 phosphorylation upon co-expression with a chimeric EpoR-gp130 receptor. To assess whether SOCS3 auto-ubiquitylates I generated an L189A SOCS3 mutant that could no longer bind the Elongins and therefore form the E3 ligase complex required for ubiquitylation. A denaturing IP to assess the ubiquitylation status of this mutant was performed and revealed that, despite an inability to bind the Elongins, the L189A mutant was poly-ubiquitylated similar to WT SOCS3. Together these data suggested that SOCS3 does not auto-ubiquitylate and that a separate E3 ligase must regulate SOCS3 ubiquitylation. This study sought to identify the E3 ligase and deubiquitylating (DUB) enzymes controlling the ubiquitylation of SOCS3. Our initial strategy was to develop a tool to screen an E3 ligase/DUB library, using an siARRAY, to sequentially knockdown all known E3 ligases in the presence of a SOCS3-luciferase fusion protein or endogenous SOCS3 in a high content imaging screening platform. However, due to a poor assay window (<2) and non-specific immunoreactivity of SOCS3 antibodies available, these methods were deemed unsuitable for screening purposes. In the absence of a suitable tool to screen the si-ARRAY, LC-MS-MS analysis of a SOCS3 co-immunoprecipitate (co-IP) was investigated. I performed a SOCS3 under conditions which preserved protein-protein interactions, with the aim of identifying novel E3 ligase and/or DUBs that could potentially interact with SOCS3. These data were searched for E3 ligase or DUB enzymes that may interact with SOCS3 in HEK293 cells and identified two promising candidates i) an E3 ligase known as HectD1 and ii) a DUB known as USP15. This thesis has demonstrated that in the presence of HectD1 overexpression, a slight increase in K63-linked polyubiquitylation of SOCS3 was observed. Mutagenesis also revealed that an N-terminal region of SOCS3 may act as a repressor of this interaction with HectD1. Additionally, USP15 was shown to reduce SOCS3 polyubiquitylation in a HEK293 overexpression system suggesting this may act as a DUB for SOCS3. The C-terminal region of SOCS3 was also shown to play a major role in the interaction with USP15. The original hypothesis of this thesis was that stabilisation of endogenous SOCS3 by inhibiting its ubiquitylation has the potential to limit vascular inflammation and NIH. Consistent with this hypothesis, immunohistochemistry visualisation of SOCS3, in human saphenous vein tissue derived from CABG patients, revealed that while SOCS3 was present throughout the media of these vessels the levels of SOCS3 within the neointima was reduced. Finally, preliminary data supporting the hypothesis that SOCS3 overexpression may limit the proliferation, but not migration, of human saphenous vein smooth muscle cells (HSVSMCs) is presented. It is expected that multiple E3 ligases and DUBs will contribute to the regulation of SOCS3 turnover. However, the identification of candidate E3 ligases or DUBs that play a significant role in SOCS3 turnover may facilitate the development of peptide disruptors or gene therapy targets to attenuate pathological SMC proliferation. A targeted approach, inhibiting the interaction between SOCS3 and identified E3 ligase, that controls the levels of SOCS3, would be expected to reduce the undesirable effects associated with global inhibition of the E3 ligase involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Formaldehyde is a compound with a wide range and is commonly used in anatomy and pathology laboratories. At room temperature is quickly volatilized to a pungent and suffocating gas and its inhalation has been correlated to nuclear alterations in different tissues. We aimed to investigate whether exposure to this compound was correlated with the appearance of cytotoxic and genotoxic features in the nasal epithelial cells of students enrolled in a human anatomy course. Material and Methods: This prospective study collected periodically nasal cells from mucosa of 17 volunteers from two different undergraduate programs with different workloads of practical lessons in an anatomy laboratory, 30 and 90 hours per semester. Cells were staining according to Feulgen method and nuclear morphology was analyzed to detect possible damage. Dunn's post hoc test was used in the statistical analysis. Pearson's correlation was performed for gender, age and questionnaire responses. Results: Epithelial cells showed indicators of cytotoxicity and mutagenicity. Students with a more extensive workload in anatomy laboratory displayed a more severe profile with an increase in karyorrhexis (p < 0.05) over time. The micronucleus analysis showed difference between first and second collection (p < 0.01), although it was not maintained over the time. Students with a less extensive workload display no differences in most of cytological features. Despite karyorrhexis was present in a greater number of cells, for this group no significant difference was observed between any range. The same was observed to karyolysis and micronucleus (p > 0.05). Conclusion: Individuals exposed for short periods of time to formaldehyde are subject to the toxic action of this gas. Karyorrhexis was the most frequently observed cytotoxic feature and micronucleus showed an increase between the first time point. The patterns observed between the student's groups suggest a negative effect due to exposure time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Chloride transport proteins are involved in a variety of human diseases and thus represent important drug targets. They are regulated in part through the amount present at the plasma membrane and tyrosine phosphorylation has been described as a novel regulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To investigate the influence of diadenosine polyphosphates on the rate of corneal epithelial cell migration. Methods. Primary corneal epithelial cell cultures were obtained from New Zealand White rabbits. Immunocytochemical experiments were performed by fixing the cells with 4% paraformaldehyde (PFA) and incubated with cytokeratin 3 primary antibody, which was subsequently incubated with a secondary IgG mouse labeled with FITC, and the cells were observed under confocal microscopy. Migration studies were performed by taking confluent monolayers that were wounded with a pipette tip and challenged with different di- and mononucleotides with or without P2 antagonist (n = 8 each treatment). For concentration–response analysis, compounds were tested in doses ranging from 10−8 to 10−3 M (n = 8). The stability of the dinucleotides was assayed by HPLC, with an isocratic method (n = 4). Results. Cells under study were verified as corneal epithelial cells via the immunocytochemical analysis. Cell migration experiments showed that Ap4A, UTP, and ATP accelerated the rate of healing (5, 2.75, and 3 hours, respectively; P < 0.05; P < 0.001), whereas Ap3A, Ap5A, and UDP delayed it (6.5, 10, and 2 hours, respectively; P < 0.05). ADP did not modify the rate of migration. Antagonists demonstrated that Ap4A and Ap3A did activate different P2Y receptors mediating corneal wound-healing acceleration and delay. Concerning the possible degradation of the dinucleotides, it was almost impossible to detect any products resulting from their cleavage. Conclusions. Based on the pharmacological profile of all the compounds tested, the two main P2Y receptors that exist in these corneal cells are a P2Y2 receptor accelerating the rate of healing and a P2Y6 receptor that delays this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clostridium difficile-associated disease causes diarrhea to fulminant colitis and death. We investigated the role of phospholipase A(2) (PLA(2)) inhibitors, aristolochic acid (AA), bromophenacyl bromide BPB and quinacrine (QUIN) on the C. difficile toxin A-induced disruption of epithelial integrity, histologic inflammatory damage and intestinal secretion. Toxin A caused severe hemorrhagic and inflammatory fluid secretion at 6-8 h in rabbit ileal segments, an effect that was significantly inhibited by QUIN (71%, P < 0.01), AA (87%, P < 0.0001) or by BPB (51%, P < 0.01). The secretory effect of toxin A was also inhibited in segments adjacent to those with AA (89%, P < 0.01). Furthermore, QUIN or AA substantially reduced the histologic damage seen after 6-8 h in rabbit ileal segments. The cyclooxygenase inhibitor, indomethacin, also significantly inhibited (96%; n = 6) the secretory effects of toxin A in ligated rabbit intestinal segments. The destruction by toxin A of F-actin at the light junctions of T-84 cell monolayers was not inhibited by AA or BPB. AA or QUIN had no effect on the T-84 cell tissue resistance reduction over 8-24 h after toxin A exposure. All the inhibitors were shown to be effective in the doses administered direct in ileal loops to inhibit PLA(2) activity. The data suggest that PLA(2) is involved in the major pathway of toxin A-induced histologic inflammatory damage and hemorrhagic fluid secretion. Cop. right (C) 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food allergy has continued to rise over the past few decades. Theincreasing occurrence of sensitivity to certain foods remains to be identified, and the allergen-epithelial interaction in particular remains elusive. Peanuts in particular are still one of the highest contributors of anaphylaxis after ingestion of a food allergen. Previous findings by our research group observed that peanut allergens were able to cross the Caco-2 cell culture model of the intestinal epithelium. Specifically, the major peanut allergens Ara h 1, Ara h 2 and Ara h 3, as well as Ara h 6. The direction of this research has deepened into identifying the mechanism by which the Caco-2 monolayers uptake peanut allergens, specifically by endocytosis. Here, we aim to further our understanding about the pathway from allergen to allergy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are epithelial Na+ channels gated by external H+. Recently, it has been demonstrated that ASICs play a role in Na+ uptake in freshwater rainbow trout. The current paper investigated the potential involvement of ASICs in Na+ transport in another freshwater fish species, the zebrafish (Danio rerio). Using molecular and histological techniques we found that asic genes and the ASIC4.2 protein are expressed in the gill of adult zebrafish. Immunohistochemistry revealed that mitochondrion-rich cells positive for ASIC4.2 do not co-localize with Na+/K+-ATPase (NKA)-rich cells, but co-localize with cells expressing vacuolar-type H+-ATPase (VHA). Furthermore, pharmacological inhibitors of ASIC and Na+/H+-exchanger (NHEs) significantly reduced uptake of Na+ in adult zebrafish exposed to low Na+ media, but did not cause the same response in individuals exposed to ultra-low Na+ water. Our results suggest that in adult zebrafish ASICs play a role in branchial Na+ uptake in media with low Na+ concentrations and that mechanisms used for Na+ uptake by zebrafish may depend on the Na+ concentration in the acclimation media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceruloplasmin (Cp) is a multicopper ferroxidase that is considered to be an important source of copper in milk for normal neonatal development. We investigated the expression, subcellular localization and secretion of Cp in PMC42-LA cell culture models representative of resting, lactating and suckled human mammary epithelia. Both secreted Cp (sCp) and plasma membrane associated glycosylphosphatidylinositol-linked Cp (GPI-Cp) were expressed in PMC42-LA cells. In all three epithelial models (resting, lactating and suckled), the expression and secretion of copper-bound, ferroxidase active, Cp (holo-Cp) was dependent on media copper concentration. In low copper (bathocuproinedisulphonic acid/d-penicillamine treated models) there was greater than a 2-fold decrease in holo-Cp expression and secretion, which was mirrored by a 2-fold increase in the expression and secretion of copper-free Cp protein (apo-Cp). Cell surface biotinylation studies revealed that the state of PMC42-LA cell differentiation (functionality), and the level of extracellular copper, had no significant effect on the level of plasma membrane bound GPI-Cp. Quantitative real time PCR analyses determined that there was no significant (P > 0.05) difference in Cp mRNA levels across all copper conditions investigated (0, 5, 50 μM). However, there was a significant (P < 0.05) increase (∼2-fold) in Cp mRNA in both the lactating and suckled models in comparison to the resting model. Furthermore, the Cp mRNA increase in response to PMC42-LA differentiation corresponded with more secreted Cp protein, both apo and holo forms, indicating a link between function and Cp requirement. Our results provide significant insight on the regulation of Cp expression and secretion in lactation and copper incorporation into milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: RPE lysosomal dysfunction is a major contributor to AMD pathogenesis. Controlled activity of a major class of RPE proteinases, the cathepsins, is crucial in maintaining correct lysosomal function. Advanced glycation end-products (AGEs) accumulate in the Bruch’s membrane (BM) with age, impacting critical RPE functions and in turn, contributing to the development of AMD. The aim of this study was to assess the effect of AGEs on lysosomal function by analysing the expression, processing and activity of the cysteine proteinases cathepsins B, L and S, and the aspartic proteinase cathepsin D. Methods: ARPE-19 cells were cultured on AGE-containing BM mimics (matrigel) for 14 days and compared to untreated substrate. Expression levels and intracellular processing of cathepsins B, D, L and S, were assessed by qPCR and immunoblotting of cell lysates. Lysosomal activity was investigated using multiple activity assays specific to each of the analysed cathepsins. Statistical analysis was performed using the Student’s independent T-test. Results: AGE exposure produced a 36% decrease in cathepsin L activity when compared to non-treated controls (p=0.02, n= 3) although no significant changes were observed in protein expression/processing under these conditions. Both the pro and active forms of cathepsin S decreased by 40% (p=0.04) and 74% (p=0.004), respectively (n=3). In contrast, the active form of the cathepsin D increased by 125% (p=0.005, n= 4). However, no changes were observed in the activity levels of both cathepsins S and D. In addition, cathepsin B expression, processing and activity also remained unaltered following AGE exposure. Conclusions: AGEs accumulation in the extracellular matrix, a phenomenon associated with the natural aging process of the BM, attenuates the expression, intracellular processing and activity of specific lysosomal effectors. Altered enzymatic function may impair important lysosomal processes such as endocytosis, autophagy and phagocytosis of photoreceptor outer segments, each of which may influence the age-related dysfunction of the RPE and subsequently, AMD pathogenesis.