994 resultados para Environmental labelling
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INFalpha and INFgamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.
Resumo:
Effective extraction of nucleic acid from environmental samples is an essential starting point in the molecular analysis of microbial communities in the environment. However, there are many different extraction methods in the literature and deciding which one is best suited to a particular sample is very difficult. This article details the important steps and choices in deciding how to extract nucleic acids from environmental samples and gives specific details of one method that has proven very successful at extracting DNA and RNA from a range of different samples.
Resumo:
We are experiencing an explosion of knowledge with relevance to conserving biodiversity and protecting the environment necessary to sustain life on earth. Many science disciplines are involved in generating this ne, knowledge and real progress can be made when scientists collaborate across disciplines to generate both macro- and micro-environmental knowledge and then communicate and interact with specialists in sociology, economics and public policy. An important requirement is that the often complex scientific concepts and their voluminous supporting data are managed in such ways as to make them accessible across the many specializations involved. Horticultural science has much to contribute to the knowledge base for environmental conservation. While it seems that production horticulture has been slow to embrace knowledge and concepts that would reduce the heavy reliance on agricultural chemicals, the use of peat as a growing medium, and lead to more sustainable use of water and other resources, environmental horticulture is providing valuable opportunities to rescue or protect endangered species, educate the public about plants and plant science, and demonstrate environmental stewardship and sustainable production practices. Likewise, social horticulture is drawing, attention to the many contributions of horticultural foods and parks and gardens to human health and welfare. Overall, horticulture has a vital role to play in integrating, knowledge from other scientific, social, economic and political disciplines.
Resumo:
1. We studied a reintroduced population of the formerly critically endangered Mauritius kestrel Falco punctatus Temmink from its inception in 1987 until 2002, by which time the population had attained carrying capacity for the study area. Post-1994 the population received minimal management other than the provision of nestboxes. 2. We analysed data collected on survival (1987-2002) using program MARK to explore the influence of density-dependent and independent processes on survival over the course of the population's development. 3.We found evidence for non-linear, threshold density dependence in juvenile survival rates. Juvenile survival was also strongly influenced by climate, with the temporal distribution of rainfall during the cyclone season being the most influential climatic variable. Adult survival remained constant throughout. 4. Our most parsimonious capture-mark-recapture statistical model, which was constrained by density and climate, explained 75.4% of the temporal variation exhibited in juvenile survival rates over the course of the population's development. 5. This study is an example of how data collected as part of a threatened species recovery programme can be used to explore the role and functional form of natural population regulatory processes. With the improvements in conservation management techniques and the resulting success stories, formerly threatened species offer unique opportunities to further our understanding of the fundamental principles of population ecology.
Resumo:
Hydroponic isotope labelling of entire plants (HILEP) is a cost-effective method enabling metabolic labelling of whole and mature plants with a stable isotope such as N-15. By utilising hydroponic media that contain N-15 inorganic salts as the sole nitrogen source, near to 100% N-15-labelling of proteins can be achieved. In this study, it is shown that HILEP, in combination with mass spectrometry, is suitable for relative protein quantitation of seven week-old Arabidopsis plants submitted to oxidative stress. Protein extracts from pooled N-14- and N-15-hydroponically grown plants were fractionated by SDS-PAGE, digested and analysed by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). Proteins were identified and the spectra of N-14/N-15 peptide pairs were extracted using their m/z chromatographic retention time, isotopic distributions, and the m/z difference between the N-14 and N-15 peptides. Relative amounts were calculated as the ratio of the sum of the peak areas of the two distinct N-14 and N-15 peptide isotope envelopes. Using Mascot and the open source trans-proteomic pipeline (TPP), the data processing was automated for global proteome quantitation down to the isoform level by extracting isoform specific peptides. With this combination of metabolic labelling and mass spectrometry it was possible to show differential protein expression in the apoplast of plants submitted to oxidative stress. Moreover, it was possible to discriminate between differentially expressed isoforms belonging to the same protein family, such as isoforms of xylanases and pathogen-related glucanases (PR 2). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Differential protein expression analysis based on modification of selected amino acids with labelling reagents has become the major method of choice for quantitative proteomics. One such methodology, two-dimensional difference gel electrophoresis (2-D DIGE), uses a matched set of fluorescent N-hydroxysuccinimidyl (NHS) ester cyanine dyes to label lysine residues in different samples which can be run simultaneously on the same gels. Here we report the use of iodoacetylated cyanine (ICy) dyes (for labelling of cysteine thiols, for 2-D DIGE-based redox proteomics. Characterisation of ICy dye labelling in relation to its stoichiometry, sensitivity and specificity is described, as well as comparison of ICy dye with NHS-Cy dye labelling and several protein staining methods. We have optimised conditions for labelling of nonreduced, denatured samples and report increased sensitivity for a subset of thiol-containing proteins, allowing accurate monitoring of redox-dependent thiol modifications and expression changes, Cysteine labelling was then combined with lysine labelling in a multiplex 2-D DIGE proteomic study of redox-dependent and ErbB2-dependent changes in epithelial cells exposed to oxidative stress. This study identifies differentially modified proteins involved in cellular redox regulation, protein folding, proliferative suppression, glycolysis and cytoskeletal organisation, revealing the complexity of the response to oxidative stress and the impact that overexpression of ErbB2 has on this response.
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INF alpha and INF gamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.
Resumo:
The Bahrain International Circuit (BIC) is considered its one of the best international racing car track in terms of technical aspects and architectural quality. Two Formula 1 races have been hosted in the Kingdom of Bahrain, in 2004 and 2005, at BIC. The BIC had recently won the award of the best international racing car circuit. This paper highlights on the elements that contributed to the success of such project starting from the architectural aspects, construction, challenges, tendering process, risk management, the workforce, speed of the construction method, and future prospects for harnessing solar and wind energy for sustainable electrification and production of water for the circuit, i.e. making BIC green and environment-friendly international circuit.
Resumo:
The Bahrain International Circuit (BIC) and complex, at latitude 26.00N and longitude 51.54E, was built in 483 days and cost 150 million US$. The circuit consists of six different individual tracks with a 3.66 km outer track (involving 10 turns) and a 2.55 km inner track (having six turns). The complex has been designed to host a variety of other sporting activities. Fifty thousand spectators, including 10,500 in the main grandstand, can be accommodated simultaneously. State-of-the art on-site media and broadcast facilities are available. The noise level emitted from vehicles on the circuit during the Formula-1 event, on April 4th 2004, was acceptable and caused no physical disturbance to the fans in the VIP lounges or to scholars studying at the University of Bahrain's Shakeir Campus, which is only 1.5 km away from the circuit. The sound-intensity level (SIL) recorded on the balcony of the VIP lounge was 128 dB(A) and was 80 dB(A) inside the lounge. The calculated SIL immediately outside the lecture halls of the University of Bahrain was 70 dB(A) and 65 dB(A) within them. Thus racing at BIC can proceed without significantly disturbing the academic-learning process. The purchased electricity demand by the BIC complex peaked (at 4.5 MW) during the first Formula-1 event on April 4th 2004. The reverse-osmosis (RO) plant at the BIC provides 1000 m(3) of desalinated water per day for landscape irrigation. Renewable-energy inputs, (i.e., via solar and wind power), at the BIC could be harnessed to generate electricity for water desalination, air conditioning, lighting as well as for irrigation. If the covering of the BIC complex was covered by adhesively fixed modern photovoltaic cells, then similar to 1.2 MW of solar electricity could be generated. If two horizontal-axis, at 150 m height above the ground, three 75m bladed, wind turbines were to be installed at the BIC, then the output could reach 4 MW. Furthermore, if 10,000 Jojoba trees (a species renowned for having a low demand for water, needing only five irrigations per year in Bahrain and which remain green throughout the year) are planted near the circuit, then the local micro-climate would be improved with respect to human comfort as well as the local environment becoming cleaner.
Resumo:
This paper aims to introduce a knowledge-based managemental prototype entitled Eþ for environmental-conscious construction relied on an integration of current environmental management tools in construction area. The overall objective of developing the Eþ prototype is to facilitate selectively reusing the retrievable knowledge in construction engineering and management areas assembled from previous projects for the best practice in environmental-conscious construction. The methodologies adopted in previous and ongoing research related to the development of the Eþ belong to the operations research area and the information technology area, including literature review, questionnaire survey and interview, statistical analysis, system analysis and development, experimental research and simulation, and so on. The content presented in this paper includes an advanced Eþ prototype, a comprehensive review of environmental management tools integrated to the Eþ prototype, and an experimental case study of the implementation of the Eþ prototype. It is expected that the adoption and implementation of the Eþ prototype can effectively facilitate contractors to improve their environmental performance in the lifecycle of projectbased construction and to reduce adverse environmental impacts due to the deployment of various engineering and management processes at each construction stage.
Resumo:
A good working environment will help to provide the user with a good sense of wellbeing, inspiration and comfort. The main advantages of good environments is in terms of reduced upgrading investment, reduced sickness absence, an optimum level of productivity and improved overall satisfaction. Individuals respond very differently to their environments and research suggests a correlation between worker productivity and well-being, environmental, social and organisational factors. Research shows the occupants who report a high level of dissatisfaction about their job are usually the people who suffer more work and office environment related illnesses which affect their wellbeing, but not always so. Well-being expresses overall satisfaction. There is a connection between dissatisfied staff and low productivity; and a good sense of well-being is very important as it can lead to substantial productivity gain. If the environment is particularly bad people will be dissatisfied irrespective of job satisfaction. This paper describes research showing how environment affects productivity.