994 resultados para Environmental application


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric aerosols affect both global and regional climate by altering the radiative balance of the atmosphere and acting as cloud condensation nuclei. Despite an increased focus on the research of atmospheric aerosols due to concerns about global climate change, current methods to observe the morphology of aerosols and to measure their hygroscopic properties are limited in various ways by experimental procedure. The primary objectives of this thesis were to use atomic force microscopy to determine the morphology of atmospherically relevant aerosols and to investigate theutility of environmental atomic force microscopy for imaging aerosols as they respond to changes in relative humidity. Traditional aerosol generation and collection techniques were used in conjunction with atomic force microscopy to image commonorganic and inorganic aerosols. In addition, environmental AFM was used to image aerosols at a variety of relative humidity values. The results of this research demonstrated the utility of atomic force microscopy for measuring the morphology of aerosols. In addition, the utility of environmental AFM for measuring the hygroscopic properties of aerosols was demonstrated. Further research in this area will lead to an increased understanding of the role oforganic and inorganic aerosols in the atmosphere, allowing for the effects of anthropogenic aerosol emissions to be quantified and for more accurate climate models to be developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efforts have been made to provide a scientific basis for using environmental services as a conceptual tool to enhance conservation and improve livelihoods in protected mountain areas (MtPAS). Little attention has been paid to participatory research or locals’ concerns as environmental service (ES) users and providers. Such perspectives can illuminate the complex interplay between mountain ecosystems, environmental services and the determinants of human well-being. Repeat photography, long used in geographical fieldwork, is new as a qualitative research tool. This study uses a novel application of repeat photography as a diachronic photo-diary to examine local perceptions of change in ES in Sagarmatha National Park. Results show a consensus among locals on adverse changes to ES, particularly protection against natural hazards, such as landslides and floods, in the UNESCO World Heritage Site. We argue that our methodology could complement biophysical ecosystem assessments in MtPAS, especially since assessing ES, and acting on that, requires integrating diverse stakeholders’ knowledge, recognizing power imbalances and grappling with complex social-ecological systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Functional deterioration in cystic fibrosis (CF) may be reflected by increasing bronchial obstruction and, as recently shown, by ventilation inhomogeneities. This study investigated which physiological factors (airway obstruction, ventilation inhomogeneities, pulmonary hyperinflation, development of trapped gas) best express the decline in lung function, and what role specific CFTR genotypes and different types of bronchial infection may have upon this process. METHODS: Serial annual lung function tests, performed in 152 children (77 males; 75 females) with CF (age range: 6-18 y) provided data pertaining to functional residual capacity (FRCpleth, FRCMBNW), volume of trapped gas (VTG), effective specific airway resistance (sReff), lung clearance index (LCI), and forced expiratory indices (FVC, FEV1, FEF50). RESULTS: All lung function parameters showed progression with age. Pulmonary hyperinflation (FRCpleth > 2SDS) was already present in 39% of patients at age 6-8 yrs, increasing to 67% at age 18 yrs. The proportion of patients with VTG > 2SDS increased from 15% to 54% during this period. Children with severe pulmonary hyperinflation and trapped gas at age 6-8 yrs showed the most pronounced disease progression over time. Age related tracking of lung function parameters commences early in life, and is significantly influenced by specific CFTR genotypes. The group with chronic P. aeruginosa infection demonstrated most rapid progression in all lung function parameters, whilst those with chronic S. aureus infection had the slowest rate of progression. LCI, measured as an index of ventilation inhomogeneities was the most sensitive discriminator between the 3 types of infection examined (p < 0.0001). CONCLUSION: The relationships between lung function indices, CFTR genotypes and infective organisms observed in this study suggest that measurement of other lung function parameters, in addition to spirometry alone, may provide important information about disease progression in CF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessments of environmental and territorial justice are similar in that both assess whether empirical relations between the spatial arrangement of undesirable hazards (or desirable public goods and services) and socio-demographic groups are consistent with notions of social justice, evaluating the spatial distribution of benefits and burdens (outcome equity) and the process that produces observed differences (process equity. Using proximity to major highways in NYC as a case study, we review methodological issues pertinent to both fields and discuss choice and computation of exposure measures, but focus primarily on measures of inequity. We present inequity measures computed from the empirically estimated joint distribution of exposure and demographics and compare them to traditional measures such as linear regression, logistic regression and Theil’s entropy index. We find that measures computed from the full joint distribution provide more unified, transparent and intuitive operational definitions of inequity and show how the approach can be used to structure siting and decommissioning decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water resources are becoming increasingly scarce in the Mt. Kenya region. Land use and climate change may pose additional challenges to water management in the future. In order to assess the impacts of environmental change, the NRM3 Streamflow Model, a simple, semi-distributed, grid-based water balance model, is evaluated as a tool for discharge prediction in six meso-scale catchments on the western slopes of Mt. Kenya, and used to analyse the impact of land use and climate change scenarios on water resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Environmental Process and Simulation Center (EPSC) at Michigan Technological University started accommodating laboratories for an Environmental Engineering senior level class CEE 4509 Environmental Process and Simulation Laboratory since 2004. Even though the five units that exist in EPSC provide the students opportunities to have hands-on experiences with a wide range of water/wastewater treatment technologies, a key module was still missing for the student to experience a full cycle of treatment. This project fabricated a direct-filtration pilot system in EPSC and generated a laboratory manual for education purpose. Engineering applications such as clean bed head loss calculation, backwash flowrate determination, multimedia density calculation and run length prediction are included in the laboratory manual. The system was tested for one semester and modifications have been made both to the direct filtration unit and the laboratory manual. Future work is also proposed to further refine the module.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As environmental problems became more complex, policy and regulatory decisions become far more difficult to make. The use of science has become an important practice in the decision making process of many federal agencies. Many different types of scientific information are used to make decisions within the EPA, with computer models becoming especially important. Environmental models are used throughout the EPA in a variety of contexts and their predictive capacity has become highly valued in decision making. The main focus of this research is to examine the EPA’s Council for Regulatory Modeling (CREM) as a case study in addressing science issues, particularly models, in government agencies. Specifically, the goal was to answer the following questions: What is the history of the CREM and how can this information shed light on the process of science policy implementation? What were the goals of implementing the CREM? Were these goals reached and how have they changed? What have been the impediments that the CREM has faced and why did these impediments occur? The three main sources of information for this research came from observations during summer employment with the CREM, document review and supplemental interviews with CREM participants and other members of the modeling community. Examining a history of modeling at the EPA, as well as a history of the CREM, provides insight into the many challenges that are faced when implementing science policy and science policy programs. After examining the many impediments that the CREM has faced in implementing modeling policies, it was clear that the impediments fall into two separate categories, classic and paradoxical. The classic impediments include the more standard impediments to science policy implementation that might be found in any regulatory environment, such as lack of resources and changes in administration. Paradoxical impediments are cyclical in nature, with no clear solution, such as balancing top-down versus bottom-up initiatives and coping with differing perceptions. These impediments, when not properly addressed, severely hinder the ability for organizations to successfully implement science policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As transportation infrastructure across the globe approaches the end of its service life, new innovative materials and applications are needed to sustainably repair and prevent damage to these structures. Bridge structures in the United States in particular are at risk as a large percentage will be reaching their design service lives in the coming decades. Superstructure deterioration occurs due to a variety of factors, but a major contributor comes in the form of deteriorating concrete bridge decks. Within a concrete bridge deck system, deterioration mechanisms can include spalling, delaminations, scaling from unsuitable material selection, freeze-thaw damage, and corrosion of reinforcing steel due to infiltration of chloride ions and moisture. This thesis presents findings pertaining to the feasibility of using UHPC as a thin-bonded overlay on concrete bridge decks, specifically in precast bridge deck applications where construction duration and traffic interruption can be minimized, as well as in cast-in-place field applications. UHPC has several properties that make it a desirable material for this application. These properties include post-cracking tensile capacity, high compressive strength, high resistance to environmental and chemical attack, negligible permeability, negligible dry shrinkage when thermally cured, and the ability to self consolidate. The compatibility of this bridge deck overlay system was determined to minimize overlay thickness and dead load without sacrificing bond integrity or lose of protective capabilities. A parametric analysis was conducted using a 3D finite element model of a simply supported bridge under HS-20 truck and overload. Experimental tests were conducted to determine the net effect of UHPC volume change due to restrained shrinkage and tensile creep relaxation. The combined effects from numerical models and test results were then considered in determining the optimum overlay thickness for cast-in-place and precast applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation examines the global technological and environmental history of copper smelting and the conflict that developed between historic preservation and environmental remediation at major copper smelting sites in the United States after their productive periods ended. Part I of the dissertation is a synthetic overview of the history of copper smelting and its environmental impact. After reviewing the basic metallurgy of copper ores, the dissertation contains successive chapters on the history of copper smelting to 1640, culminating in the so-called German, or Continental, processing system; on the emergence of the rival Welsh system during the British industrial revolution; and on the growth of American dominance in copper production the late 19th and early 20th centuries. The latter chapter focuses, in particular, on three of the most important early American copper districts: Michigan’s Keweenaw Peninsula, Tennessee’s Copper Basin, and Butte-Anaconda, Montana. As these three districts went into decline and ultimately out of production, they left a rich industrial heritage and significant waste and pollution problems generated by increasingly more sophisticated technologies capable of commercially processing steadily growing volumes of decreasingly rich ores. Part II of the dissertation looks at the conflict between historic preservation and environmental remediation that emerged locally and nationally in copper districts as they went into decline and eventually ceased production. Locally, former copper mining communities often split between those who wished to commemorate a region’s past importance and develop heritage tourism, and local developers who wished to clear up and clean out old industrial sites for other purposes. Nationally, Congress passed laws in the 1960s and 1970s mandating the preservation of historical resources (National Historic Preservation Act) and laws mandating the cleanup of contaminated landscapes (CERCLA, or Superfund), objectives sometimes in conflict – especially in the case of copper smelting sites. The dissertation devotes individual chapters to the conflicts that developed between environmental remediation, particularly involving the Environmental Protection Agency and the heritage movement in the Tennessee, Montana, and Michigan copper districts. A concluding chapter provides a broad model to illustrate the relationship between industrial decline, federal environmental remediation activities, and the growth of heritage consciousness in former copper mining and smelting areas, analyzes why the outcome varied in the three areas, and suggests methods for dealing with heritage-remediation issues to minimize conflict and maximize heritage preservation.