991 resultados para Environmental NGOs
Resumo:
Ongoing Cryptococcus gattii outbreaks in the Western United States and Canada illustrate the impact of environmental reservoirs and both clonal and recombining propagation in driving emergence and expansion of microbial pathogens. C. gattii comprises four distinct molecular types: VGI, VGII, VGIII, and VGIV, with no evidence of nuclear genetic exchange, indicating these represent distinct species. C. gattii VGII isolates are causing the Pacific Northwest outbreak, whereas VGIII isolates frequently infect HIV/AIDS patients in Southern California. VGI, VGII, and VGIII have been isolated from patients and animals in the Western US, suggesting these molecular types occur in the environment. However, only two environmental isolates of C. gattii have ever been reported from California: CBS7750 (VGII) and WM161 (VGIII). The incongruence of frequent clinical presence and uncommon environmental isolation suggests an unknown C. gattii reservoir in California. Here we report frequent isolation of C. gattii VGIII MATα and MATa isolates and infrequent isolation of VGI MATα from environmental sources in Southern California. VGIII isolates were obtained from soil debris associated with tree species not previously reported as hosts from sites near residences of infected patients. These isolates are fertile under laboratory conditions, produce abundant spores, and are part of both locally and more distantly recombining populations. MLST and whole genome sequence analysis provide compelling evidence that these environmental isolates are the source of human infections. Isolates displayed wide-ranging virulence in macrophage and animal models. When clinical and environmental isolates with indistinguishable MLST profiles were compared, environmental isolates were less virulent. Taken together, our studies reveal an environmental source and risk of C. gattii to HIV/AIDS patients with implications for the >1,000,000 cryptococcal infections occurring annually for which the causative isolate is rarely assigned species status. Thus, the C. gattii global health burden could be more substantial than currently appreciated.
Resumo:
In the U.S., coal fired power plants produce over 136 million tons of coal combustion residuals (CCRs) annually. CCRs are enriched in toxic elements, and their leachates can have significant impacts on water quality. Here we report the boron and strontium isotopic ratios of leaching experiments on CCRs from a variety of coal sources (Appalachian, Illinois, and Powder River Basins). CCR leachates had a mostly negative δ(11)B, ranging from -17.6 to +6.3‰, and (87)Sr/(86)Sr ranging from 0.70975 to 0.71251. Additionally, we utilized these isotopic ratios for tracing CCR contaminants in different environments: (1) the 2008 Tennessee Valley Authority (TVA) coal ash spill affected waters; (2) CCR effluents from power plants in Tennessee and North Carolina; (3) lakes and rivers affected by CCR effluents in North Carolina; and (4) porewater extracted from sediments in lakes affected by CCRs. The boron isotopes measured in these environments had a distinctive negative δ(11)B signature relative to background waters. In contrast (87)Sr/(86)Sr ratios in CCRs were not always exclusively different from background, limiting their use as a CCR tracer. This investigation demonstrates the validity of the combined geochemical and isotopic approach as a unique and practical identification method for delineating and evaluating the environmental impact of CCRs.
Resumo:
This article describes future trends in environmental education (EE) research based on a mixed-methods study where data were collected through a content analysis of peer-reviewed articles published in EE journals between 2005 and 2010; interviews with experts engaged in EE research and sustainability-related fields; surveys with current EE researchers; and convenings with EE researchers and practitioners. We discuss four core thematic findings: (1) EE researchers are highlighting the importance of collective and community learning and action; (2) EE researchers are placing increased emphasis on the intersection of learning within the context of social-ecological communities (e.g. links between environmental quality and human well-being); (3) a pressing need exists for research conducted with urban and diverse populations; and (4) research around social media and other information technologies is of great interest, yet currently is sparse. © 2013 © 2013 Taylor & Francis.
Resumo:
Market failures associated with environmental pollution interact with market failures associated with the innovation and diffusion of new technologies. These combined market failures provide a strong rationale for a portfolio of public policies that foster emissions reduction as well as the development and adoption of environmentally beneficial technology. Both theory and empirical evidence suggest that the rate and direction of technological advance is influenced by market and regulatory incentives, and can be cost-effectively harnessed through the use of economic-incentive based policy. In the presence of weak or nonexistent environmental policies, investments in the development and diffusion of new environmentally beneficial technologies are very likely to be less than would be socially desirable. Positive knowledge and adoption spillovers and information problems can further weaken innovation incentives. While environmental technology policy is fraught with difficulties, a long-term view suggests a strategy of experimenting with policy approaches and systematically evaluating their success. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The relationship between technological change and environmental policy has received increasing attention from scholars and policy makers alike over the past ten years. This is partly because the environmental impacts of social activity are significantly affected by technological change, and partly because environmental policy interventions themselves create new constraints and incentives that affect the process of technological developments. Our central purpose in this article is to provide environmental economists with a useful guide to research on technological change and the analytical tools that can be used to explore further the interaction between technology and the environment. In Part 1 of the article, we provide an overview of analytical frameworks for investigating the economics of technological change, highlighting key issues for the researcher. In Part 2, we turn our attention to theoretical analysis of the effects of environmental policy on technological change, and in Part 3, we focus on issues related to the empirical analysis of technology innovation and diffusion. Finally, we conclude in Part 4 with some additional suggestions for research.
Resumo:
Cryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATα mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans.
Resumo:
PURPOSE: The role of PM10 in the development of allergic diseases remains controversial among epidemiological studies, partly due to the inability to control for spatial variations in large-scale risk factors. This study aims to investigate spatial correspondence between the level of PM10 and allergic diseases at the sub-district level in Seoul, Korea, in order to evaluate whether the impact of PM10 is observable and spatially varies across the subdistricts. METHODS: PM10 measurements at 25 monitoring stations in the city were interpolated to 424 sub-districts where annual inpatient and outpatient count data for 3 types of allergic diseases (atopic dermatitis, asthma, and allergic rhinitis) were collected. We estimated multiple ordinary least square regression models to examine the association of the PM10 level with each of the allergic diseases, controlling for various sub-district level covariates. Geographically weighted regression (GWR) models were conducted to evaluate how the impact of PM10 varies across the sub-districts. RESULTS: PM10 was found to be a significant predictor of atopic dermatitis patient count (P<0.01), with greater association when spatially interpolated at the sub-district level. No significant effect of PM10 was observed on allergic rhinitis and asthma when socioeconomic factors were controlled for. GWR models revealed spatial variation of PM10 effects on atopic dermatitis across the sub-districts in Seoul. The relationship of PM10 levels to atopic dermatitis patient counts is found to be significant only in the Gangbuk region (P<0.01), along with other covariates including average land value, poverty rate, level of education and apartment rate (P<0.01). CONCLUSIONS: Our findings imply that PM10 effects on allergic diseases might not be consistent throughout Seoul. GIS-based spatial modeling techniques could play a role in evaluating spatial variation of air pollution impacts on allergic diseases at the sub-district level, which could provide valuable guidelines for environmental and public health policymakers.
Resumo:
BACKGROUND: This study examined whether objective measures of food, physical activity and built environment exposures, in home and non-home settings, contribute to children's body weight. Further, comparing GPS and GIS measures of environmental exposures along routes to and from school, we tested for evidence of selective daily mobility bias when using GPS data. METHODS: This study is a cross-sectional analysis, using objective assessments of body weight in relation to multiple environmental exposures. Data presented are from a sample of 94 school-aged children, aged 5-11 years. Children's heights and weights were measured by trained researchers, and used to calculate BMI z-scores. Participants wore a GPS device for one full week. Environmental exposures were estimated within home and school neighbourhoods, and along GIS (modelled) and GPS (actual) routes from home to school. We directly compared associations between BMI and GIS-modelled versus GPS-derived environmental exposures. The study was conducted in Mebane and Mount Airy, North Carolina, USA, in 2011. RESULTS: In adjusted regression models, greater school walkability was associated with significantly lower mean BMI. Greater home walkability was associated with increased BMI, as was greater school access to green space. Adjusted associations between BMI and route exposure characteristics were null. The use of GPS-actual route exposures did not appear to confound associations between environmental exposures and BMI in this sample. CONCLUSIONS: This study found few associations between environmental exposures in home, school and commuting domains and body weight in children. However, walkability of the school neighbourhood may be important. Of the other significant associations observed, some were in unexpected directions. Importantly, we found no evidence of selective daily mobility bias in this sample, although our study design is in need of replication in a free-living adult sample.
Resumo:
As the study of interactions between pathogenic microorganisms and their environment is part of microbial ecology, this chapter reviews the different types of human pathogens found in the environment, the different types of fecal indicators used in water quality monitoring, the biotic and abiotic factors affecting the survival and the infectivity of pathogenic microorganisms during their transportation in the environment, and the methods presently available to detect rare microorganisms in environmental samples. This chapter exclusively focuses on human pathogens.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published