1000 resultados para Embarrassingly Parallel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zernike polynomials are a well known set of functions that find many applications in image or pattern characterization because they allow to construct shape descriptors that are invariant against translations, rotations or scale changes. The concepts behind them can be extended to higher dimension spaces, making them also fit to describe volumetric data. They have been less used than their properties might suggest due to their high computational cost. We present a parallel implementation of 3D Zernike moments analysis, written in C with CUDA extensions, which makes it practical to employ Zernike descriptors in interactive applications, yielding a performance of several frames per second in voxel datasets about 2003 in size. In our contribution, we describe the challenges of implementing 3D Zernike analysis in a general-purpose GPU. These include how to deal with numerical inaccuracies, due to the high precision demands of the algorithm, or how to deal with the high volume of input data so that it does not become a bottleneck for the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper outlines the problems found in the parallelization of SPH (Smoothed Particle Hydrodynamics) algorithms using Graphics Processing Units. Different results of some parallel GPU implementations in terms of the speed-up and the scalability compared to the CPU sequential codes are shown. The most problematic stage in the GPU-SPH algorithms is the one responsible for locating neighboring particles and building the vectors where this information is stored, since these specific algorithms raise many dificulties for a data-level parallelization. Because of the fact that the neighbor location using linked lists does not show enough data-level parallelism, two new approaches have been pro- posed to minimize bank conflicts in the writing and subsequent reading of the neighbor lists. The first strategy proposes an efficient coordination between CPU-GPU, using GPU algorithms for those stages that allow a straight forward parallelization, and sequential CPU algorithms for those instructions that involve some kind of vector reduction. This coordination provides a relatively orderly reading of the neighbor lists in the interactions stage, achieving a speed-up factor of x47 in this stage. However, since the construction of the neighbor lists is quite expensive, it is achieved an overall speed-up of x41. The second strategy seeks to maximize the use of the GPU in the neighbor's location process by executing a specific vector sorting algorithm that allows some data-level parallelism. Al- though this strategy has succeeded in improving the speed-up on the stage of neighboring location, the global speed-up on the interactions stage falls, due to inefficient reading of the neighbor vectors. Some changes to these strategies are proposed, aimed at maximizing the computational load of the GPU and using the GPU texture-units, in order to reach the maximum speed-up for such codes. Different practical applications have been added to the mentioned GPU codes. First, the classical dam-break problem is studied. Second, the wave impact of the sloshing fluid contained in LNG vessel tanks is also simulated as a practical example of particle methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a new visual servo control and strategies that are used to carry out dynamic tasks by the Robotenis platform. This platform is basically a parallel robot that is equipped with an acquisition and processing system of visual information, its main feature is that it has a completely open architecture control, and planned in order to design, implement, test and compare control strategies and algorithms (visual and actuated joint controllers). Following sections describe a new visual control strategy specially designed to track and intercept objects in 3D space. The results are compared with a controller shown in previous woks, where the end effector of the robot keeps a constant distance from the tracked object. In this work, the controller is specially designed in order to allow changes in the tracking reference. Changes in the tracking reference can be used to grip an object that is under movement, or as in this case, hitting a hanging Ping-Pong ball. Lyapunov stability is taken into account in the controller design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of robot calibration is the correction of the possible errors in the robot parameters. This paper presents a method for a kinematic calibration of a parallel robot that is equipped with one camera in hand. In order to preserve the mechanical configuration of the robot, the camera is utilized to acquire incremental positions of the end effector from a spherical object that is fixed in the word reference frame. The positions of the end effector are related to incremental positions of resolvers of the motors of the robot, and a kinematic model of the robot is used to find a new group of parameters which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and improving spatial measurements. Finally, the robotic system is designed to carry out tracking tasks and the calibration of the robot is validated by means of integrating the errors of the visual controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rms voltage regulation may be an attractive possibility for controlling power inverters. Combined with a Hall Effect sensor for current control, it keeps its parallel operation capability while increasing its noise immunity, which may lead to a reduction of the Total Harmonic Distortion (THD). Besides, as voltage regulation is designed in DC, a simple PI regulator can provide accurate voltage tracking. Nevertheless, this approach does not lack drawbacks. Its narrow voltage bandwidth makes transients last longer and it increases the voltage THD when feeding non-linear loads, such as rectifying stages. On the other hand, the implementation can fall into offset voltage error. Furthermore, the information of the output voltage phase is hidden for the control as well, making the synchronization of a 3-phase setup not trivial. This paper explains the concept, design and implementation of the whole control scheme, in an on board inverter able to run in parallel and within a 3-phase setup. Special attention is paid to solve the problems foreseen at implementation level: a third analog loop accounts for the offset level is added and a digital algorithm guarantees 3-phase voltage synchronization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a theoretical analysis and an optimization method for envelope amplifier. Highly efficient envelope amplifiers based on a switching converter in parallel or series with a linear regulator have been analyzed and optimized. The results of the optimization process have been shown and these two architectures are compared regarding their complexity and efficiency. The optimization method that is proposed is based on the previous knowledge about the transmitted signal type (OFDM, WCDMA...) and it can be applied to any signal type as long as the envelope probability distribution is known. Finally, it is shown that the analyzed architectures have an inherent efficiency limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compilation techniques such as those portrayed by the Warren Abstract Machine(WAM) have greatly improved the speed of execution of logic programs. The research presented herein is geared towards providing additional performance to logic programs through the use of parallelism, while preserving the conventional semantics of logic languages. Two áreas to which special attention is given are the preservation of sequential performance and storage efficiency, and the use of low overhead mechanisms for controlling parallel execution. Accordingly, the techniques used for supporting parallelism are efficient extensions of those which have brought high inferencing speeds to sequential implementations. At a lower level, special attention is also given to design and simulation detail and to the architectural implications of the execution model behavior. This paper offers an overview of the basic concepts and techniques used in the parallel design, simulation tools used, and some of the results obtained to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the design and implementation of the and-parallel component of ACE. ACE is a computational model for the full Prolog language that simultaneously exploits both or-parallelism and independent and-parallelism. A high performance implementation of the ACE model has been realized and its performance reported in this paper. We discuss how some of the standard problems which appear when implementing and-parallel systems are solved in ACE. We then propose a number of optimizations aimed at reducing the overheads and the increased memory consumption which occur in such systems when using previously proposed solutions. Finally, we present results from an implementation of ACE which includes the optimizations proposed. The results show that ACE exploits and-parallelism with high efficiency and high speedups. Furthermore, they also show that the proposed optimizations, which are applicable to many other and-parallel systems, significantly decrease memory consumption and increase speedups and absolute performance both in forwards execution and during backtracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We argüe that in order to exploit both Independent And- and Or-parallelism in Prolog programs there is advantage in recomputing some of the independent goals, as opposed to all their solutions being reused. We present an abstract model, called the Composition-Tree, for representing and-or parallelism in Prolog Programs. The Composition-tree closely mirrors sequential Prolog execution by recomputing some independent goals rather than fully re-using them. We also outline two environment representation techniques for And-Or parallel execution of full Prolog based on the Composition-tree model abstraction. We argüe that these techniques have advantages over earlier proposals for exploiting and-or parallelism in Prolog.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, applications in domains such as telecommunications, network security or large scale sensor networks showed the limits of the traditional store-then-process paradigm. In this context, Stream Processing Engines emerged as a candidate solution for all these applications demanding for high processing capacity with low processing latency guarantees. With Stream Processing Engines, data streams are not persisted but rather processed on the fly, producing results continuously. Current Stream Processing Engines, either centralized or distributed, do not scale with the input load due to single-node bottlenecks. Moreover, they are based on static configurations that lead to either under or over-provisioning. This Ph.D. thesis discusses StreamCloud, an elastic paralleldistributed stream processing engine that enables for processing of large data stream volumes. Stream- Cloud minimizes the distribution and parallelization overhead introducing novel techniques that split queries into parallel subqueries and allocate them to independent sets of nodes. Moreover, Stream- Cloud elastic and dynamic load balancing protocols enable for effective adjustment of resources depending on the incoming load. Together with the parallelization and elasticity techniques, Stream- Cloud defines a novel fault tolerance protocol that introduces minimal overhead while providing fast recovery. StreamCloud has been fully implemented and evaluated using several real word applications such as fraud detection applications or network analysis applications. The evaluation, conducted using a cluster with more than 300 cores, demonstrates the large scalability, the elasticity and fault tolerance effectiveness of StreamCloud. Resumen En los útimos años, aplicaciones en dominios tales como telecomunicaciones, seguridad de redes y redes de sensores de gran escala se han encontrado con múltiples limitaciones en el paradigma tradicional de bases de datos. En este contexto, los sistemas de procesamiento de flujos de datos han emergido como solución a estas aplicaciones que demandan una alta capacidad de procesamiento con una baja latencia. En los sistemas de procesamiento de flujos de datos, los datos no se persisten y luego se procesan, en su lugar los datos son procesados al vuelo en memoria produciendo resultados de forma continua. Los actuales sistemas de procesamiento de flujos de datos, tanto los centralizados, como los distribuidos, no escalan respecto a la carga de entrada del sistema debido a un cuello de botella producido por la concentración de flujos de datos completos en nodos individuales. Por otra parte, éstos están basados en configuraciones estáticas lo que conducen a un sobre o bajo aprovisionamiento. Esta tesis doctoral presenta StreamCloud, un sistema elástico paralelo-distribuido para el procesamiento de flujos de datos que es capaz de procesar grandes volúmenes de datos. StreamCloud minimiza el coste de distribución y paralelización por medio de una técnica novedosa la cual particiona las queries en subqueries paralelas repartiéndolas en subconjuntos de nodos independientes. Ademas, Stream- Cloud posee protocolos de elasticidad y equilibrado de carga que permiten una optimización de los recursos dependiendo de la carga del sistema. Unidos a los protocolos de paralelización y elasticidad, StreamCloud define un protocolo de tolerancia a fallos que introduce un coste mínimo mientras que proporciona una rápida recuperación. StreamCloud ha sido implementado y evaluado mediante varias aplicaciones del mundo real tales como aplicaciones de detección de fraude o aplicaciones de análisis del tráfico de red. La evaluación ha sido realizada en un cluster con más de 300 núcleos, demostrando la alta escalabilidad y la efectividad tanto de la elasticidad, como de la tolerancia a fallos de StreamCloud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a technique to estimate accurate speedups for parallel logic programs with relative independence from characteristics of a given implementation or underlying parallel hardware. The proposed technique is based on gathering accurate data describing one execution at run-time, which is fed to a simulator. Alternative schedulings are then simulated and estimates computed for the corresponding speedups. A tool implementing the aforementioned techniques is presented, and its predictions are compared to the performance of real systems, showing good correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incorporating the possibility of attaching attributes to variables in a logic programming system has been shown to allow the addition of general constraint solving capabilities to it. This approach is very attractive in that by adding a few primitives any logic programming system can be turned into a generic constraint logic programming system in which constraint solving can be user deñned, and at source level - an extreme example of the "glass box" approach. In this paper we propose a different and novel use for the concept of attributed variables: developing a generic parallel/concurrent (constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which implements attributed variables and a few additional primitives can be easily customized at source level to implement many of the languages and execution models of parallelism and concurrency currently proposed, in both shared memory and distributed systems. We illustrate this through examples and report on an implementation of our ideas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years a lot of research has been invested in parallel processing of numerical applications. However, parallel processing of Symbolic and AI applications has received less attention. This paper presents a system for parallel symbolic computitig, narned ACE, based on the logic programming paradigm. ACE is a computational model for the full Prolog language, capable of exploiting Or-parall< lism and Independent And-parallelism. In this paper vve focus on the implementation of the and-parallel part of the ACE system (ralled &ACE) on a shared memory multiprocessor, d< scribing its organization, some optimizations, and presenting some performance figures, proving the abilhy of &ACE to efficiently exploit parallelism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel execution model for parallel implementation of logic programs which is capable of exploiting both independent and-parallelism and or-parallelism in an efficient way. This model extends the stack copying approach, which has been successfully applied in the Muse system to implement or-parallelism, by integrating it with proven techniques used to support independent and-parallelism. We show how all solutions to non-deterministic andparallel goals are found without repetitions. This is done through recomputation as in Prolog (and in various and-parallel systems, like &-Prolog and DDAS), i.e., solutions of and-parallel goals are not shared. We propose a scheme for the efficient management of the address space in a way that is compatible with the apparently incompatible requirements of both and- and or-parallelism. We also show how the full Prolog language, with all its extra-logical features, can be supported in our and-or parallel system so that its sequential semantics is preserved. The resulting system retains the advantages of both purely or-parallel systems as well as purely and-parallel systems. The stack copying scheme together with our proposed memory management scheme can also be used to implement models that combine dependent and-parallelism and or-parallelism, such as Andorra and Prometheus.