977 resultados para Editorial market field diffusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most definitions of virtual enterprise (VE) incorporate the idea of extended and collaborative outsourcing to suppliers and subcontractors in order to achieve a competitive response to market demands (Webster, Sugden, & Tayles, 2004). As suggested by several authors (Browne & Zhang, 1999; Byrne, 1993; Camarinha-Matos & Afsarmanesh, 1999; Cunha, Putnik, & Ávila, 2000; Davidow & Malone, 1992; Preiss, Goldman, & Nagel, 1996), a VE consists of a network of independent enterprises (resources providers) with reconfiguration capability in useful time, permanently aligned with the market requirements, created to take profit from a specific market opportunity, and where each participant contributes with its best practices and core competencies to the success and competitiveness of the structure as a whole. Even during the operation phase of the VE, the configuration can change, to assure business alignment with the market demands, traduced by the identification of reconfiguration opportunities and continuous readjustment or reconfiguration of the VE network, to meet unexpected situations or to keep permanent competitiveness and maximum performance (Cunha & Putnik, 2002, 2005a, 2005b).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study some properties of the monotone solutions of the boundary value problem (p(u'))' - cu' + f(u) = 0, u(-infinity) = 0, u(+infinity) = 1, where f is a continuous function, positive in (0, 1) and taking the value zero at 0 and 1, and P may be an increasing homeomorphism of (0, 1) or (0, +infinity) onto [0, +infinity). This problem arises when we look for travelling waves for the reaction diffusion equation partial derivative u/partial derivative t = partial derivative/partial derivative x [p(partial derivative u/partial derivative x)] + f(u) with the parameter c representing the wave speed. A possible model for the nonlinear diffusion is the relativistic curvature operator p(nu)= nu/root 1-nu(2). The same ideas apply when P is given by the one- dimensional p- Laplacian P(v) = |v|(p-2)v. In this case, an advection term is also considered. We show that, as for the classical Fisher- Kolmogorov- Petrovski- Piskounov equations, there is an interval of admissible speeds c and we give characterisations of the critical speed c. We also present some examples of exact solutions. (C) 2014 Elsevier Inc. All rights reserved.