993 resultados para EPOXY COMPOSITES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre-consolidated carbon fibre-reinforced polyphenylene sulphide (CF/PPS) laminates were
thermoformed into V-shaped parts via designed out of autoclave thermoforming experiments.
The different processing conditions tested in the experiment have resulted in final
part angles whose differences ranged from 2.087 to 3.431 from the original mould angle.
The test results show that processing conditions influenced finished part dimensions as the
final sample angles were found to decrease relative to the tooling dimensions, as mould
temperature increases. Higher mould temperature conditions produce thinner parts due
to the thermal expansion of mould tools. The mould temperature of 170C, which can
produce parts with high degree of crystallinity as well as small size of crystal, has been
established as the optimal thermoforming condition for CF/PPS composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling. © Springer Science+Business Media B.V. 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling is a major process in the manufacturing of holes required for the assemblies of composite laminates in aerospace industry. Simulation of drilling process is an effective method in optimizing the drill geometry and process parameters in order to improve hole quality and to reduce the drill wear. In this research we have developed three-dimensional (3D) FE model for drilling CFRP. A 3D progressive intra-laminar failure model based on the Hashin's theory is considered. Also an inter-laminar delamination model which includes the onset and growth of delamination by using cohesive contact zone is developed. The developed model with inclusion of the improved delamination model and real drill geometry is used to make comparison between the step drill of different stage ratio and twist drill. Thrust force, torque and work piece stress distributions are estimated to decrease by the use of step drill with high stage ratio. The model indicates that delamination and other workpiece defects could be controlled by selection of suitable step drill geometry. Hence the 3D model could be used as a design tool for drill geometry for minimization of delamination in CFRP drilling. © 2013 Elsevier Ltd.