997 resultados para ELECTRON INJECTION
Resumo:
The crystal quality of 0.3-μm-thick as-grown epitaxial silicon-on-sapphire (SOS) was improved using solid-phase epitaxy (SPE) by implantation with silicon to 1015 ions/cm2 at 175 keV and rapid annealing using electron-beam heating, n-channel and p-channel transistormobilities increased by 31 and 19 percent, respectively, and a reduction in ring-oscillator stage delay confirmed that crystal defects near the upper silicon surface had been removed. Leakage in n-channel transistors was not significantly affected by the regrowth process but for p-channel transistors back-channel leakage was considerably greater than for the control devices. This is attributed to aluminum released by damage to the sapphire during silicon implantation. © 1985 IEEE
Resumo:
This paper outlines the development of the electron beam recrystallization approach to the formation of silicon-on-insulator layers. The technique of recrystallizing seeded layers by a line electron beam has been widely adopted. Present practice in electron beam recrystallization is reviewed, both from materials and process points of view. Applications of silicon-on-insulator substrates formed in this way are described, particularly in three-dimensional integration. © 1988.
Resumo:
A variety of hydrogenated and non-hydrogenated amorphous carbon thin films have been characterized by means of grazing-incidence X-ray reflectivity (XRR) to give information about their density, thickness, surface roughness and layering. We used XRR to validate the density of ta-C, ta-C:H and a-C:H films derived from the valence plasmon in electron energy loss spectroscopy measurements, up to 3.26 and 2.39 g/cm3 for ta-C and ta-C:H, respectively. By comparing XRR and electron energy loss spectroscopy (EELS) data, we have been able for the first time to fit a common electron effective mass of m*/me = 0.87 for all amorphous carbons and diamond, validating the `quasi-free' electron approach to density from valence plasmon energy. While hydrogenated films are found to be substantially uniform in density across the film, ta-C films grown by the filtered cathodic vacuum arc (FCVA) show a multilayer structure. However, ta-C films grown with an S-bend filter show a high uniformity and only a slight dependence on the substrate bias of both sp3 and layering.
Resumo:
Nanocluster carbon films grown using a cathodic arc process at room temperature in the presence of background gases such as helium are found to be good electron emitters. The variation in the surface morphology and the corresponding emission characteristics of the films with change in helium partial pressure (5×10-4 to 50 Torr) during film growth are reported. The effect of helium partial pressure on clustering was studied for films grown at nitrogen partial pressures of 10-4 and 10-3 Torr. The surface morphology of the films varied from smooth through clusters (with sizes 50-200 nm) to fibrous films. The threshold field varied from 1 to 10 V/μm for an emission current density 1 μA/cm2.
Resumo:
A compact trench-gate IGBT model that captures MOS-side carrier injection is developed. The model retains the simplicity of a one-dimensional solution to the ambipolar diffusion equation, but at the same time captures MOS-side carrier injection and its effects on steady-state carrier distribution in the drift region and on switching waveforms. © 2007 IEEE.
Resumo:
In the above entitled paper (ibid., vol. 55, no. 11, pp. 3001-3011), two errors were noticed after the paper went to press. The errors are corrected here.
Resumo:
This paper describes an experimental investigation into the effect of unsteady fuel injection on the performance of a valveless pulse combustor. Two fuel systems were used. The first delivered a steady flow of ethylene through choked nozzles, and the second delivered ethylene in discrete pulses using high-frequency fuel injectors. Both fuel systems injected directly into the combustion chamber. The high-frequency fuel injectors were phase locked to the unsteady pressure measured on the inlet pipe. The phase and opening pulse width of the injectors and the time-averaged fuel mass flow rate through the injectors were independently varied. For a given fuel mass flow rate, it is shown that the maximum pressure amplitude occurs when fuel is injected during flow reversal in the inlet pipe, i.e. flow direction is out of the combustor. The optimal fuel injection pulse width is shown to be approximately 2/9th of the cycle. It should, however, be noted that this is the shortest time in which the injectors can reliably be fully opened and closed. It is shown that by using unsteady fuel injection the mass flow rate of fuel needed to achieve a given amplitude of unsteady pressure can be reduced by up to 65% when compared with the steady fuel injection case. At low fuel mass flow rates unsteady fuel injection is shown to raise the efficiency of the combustor by a factor of 7 decreasing to a factor of 2 at high fuel mass flow rates. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The aim of this paper is to describe the growth and optimization of carbon nanotube (CNT) and CNT/Zinc Oxide nanostructures to produce novel electron sources. The emitters studied in this project are based on regular array of vertically aligned 5 μm height and 50 nm diameter CNTs with a pitch of 10 μm as described previously (1). Such a cathode design allows us to minimize electric field shielding effects and thus to help in optimizing the emitted current density. We have previously obtained a current density of 1 A/cm 2 from such arrays in DC mode, and over 12 A/cm2 in pulsed mode at RF frequencies. © 2010 IEEE.
Resumo:
Thin films of nano-composite Y-Ba-Cu-O (YBCO) superconductors containing nano-sized, non-superconducting particles of Y2Ba 4CuMOx (M-2411 with M = Ag and Nb) have been prepared by the PLD technique. Electron backscatter diffraction (EBSD) has been used to analyze the crystallographic orientation of nano-particles embedded in the film microstructure. The superconducting YBa2Cu3O7 (Y-123) phase matrix is textured with a dominant (001) orientation for all samples, whereas the M-2411 phase exhibits a random orientation. Angular critical current measurements at various temperature (T) and applied magnetic field (B) have been performed on thin films containing different concentration of the M-2411 second phase. An increase in critical current density J c at T < 77 K and B < 6 T is observed for samples with low concentration of the second phase (2 mol % M-2411). Films containing 5 mol % Ag-2411 exhibit lower Jc than pure Y-123 thin films at all fields and temperatures. Samples with 5 mol % Nb-2411 show higher Jc(B) than phase pure Y-123 thin films for T < 77 K. © 2010 IOP Publishing Ltd.
Resumo:
Research has begun on Microbial Carbonate Precipitation (MCP), which shows promise as a soil improvement method because of its low carbon dioxide emission compared to cement stabilized agents. MCP produces calcium carbonate from carbonates and calcium in soil voids through ureolysis by "Bacillus Pasteurii". This study focuses on how the amount of calcium carbonate precipitation is affected by the injection conditions of the microorganism and nutrient salt, such as the number of injections and the soil type. Experiments were conducted to simulate soil improvement by bio-grouting soil in a syringe. The results indicate that the amount of precipitation is affected by injection conditions and soil type, suggesting that, in order for soil improvement by MCP to be effective, it is necessary to set injection conditions that are in accordance with the soil conditions. © 2011 ASCE.