989 resultados para Double Strap Joint
Resumo:
Copyright © 2014 Elsevier Inc. All rights reserved.Understanding the impact of obesity on elective total joint arthroplasty (TJA) remains critical. Perioperative outcomes were reviewed in 316 patients undergoing primary TJA. Higher percent body fat (PBF) was associated with postoperative blood transfusion, increased hospital length of stay (LOS) >3 days, and discharge to an extended care facility while no significant differences existed for BMI. Additionally, PBF of 43.5 was associated with a 2.4× greater likelihood of blood transfusion, PBF of 36.5 with a 1.9× greater likelihood for LOS >3 days, and PBF of 36.0 with a 1.4× greater likelihood for discharge to an extended care facility. PBF may be a more effective measure than BMI to use in screening for perioperative risks and acute outcomes associated with obese total joint patients.
Resumo:
BACKGROUND: Despite the high prevalence and global impact of knee osteoarthritis (KOA), current treatments are palliative. No disease modifying anti-osteoarthritic drug (DMOAD) has been approved. We recently demonstrated significant involvement of uric acid and activation of the innate immune response in osteoarthritis (OA) pathology and progression, suggesting that traditional gout therapy may be beneficial for OA. We therefore assess colchicine, an existing commercially available agent for gout, for a new therapeutic application in KOA. METHODS/DESIGN: COLKOA is a double-blind, placebo-controlled, randomized trial comparing a 16-week treatment with standard daily dose oral colchicine to placebo for KOA. A total of 120 participants with symptomatic KOA will be recruited from a single center in Singapore. The primary end point is 30% improvement in total Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score at week 16. Secondary end points include improvement in pain, physical function, and quality of life and change in serum, urine and synovial fluid biomarkers of cartilage metabolism and inflammation. A magnetic resonance imaging (MRI) substudy will be conducted in 20 participants to evaluate change in synovitis. Logistic regression will be used to compare changes between groups in an intention-to-treat analysis. DISCUSSION: The COLKOA trial is designed to evaluate whether commercially available colchicine is effective for improving signs and symptoms of KOA, and reducing synovial fluid, serum and urine inflammatory and biochemical joint degradation biomarkers. These biomarkers should provide insights into the underlying mechanism of therapeutic response. This trial will potentially provide data to support a new treatment option for KOA. TRIAL REGISTRATION: The trial has been registered at clinicaltrials.gov as NCT02176460 . Date of registration: 26 June 2014.
Resumo:
Transsynaptic tracing has become a powerful tool used to analyze central efferents that regulate peripheral targets through multi-synaptic circuits. This approach has been most extensively used in the brain by utilizing the swine pathogen pseudorabies virus (PRV)(1). PRV does not infect great apes, including humans, so it is most commonly used in studies on small mammals, especially rodents. The pseudorabies strain PRV152 expresses the enhanced green fluorescent protein (eGFP) reporter gene and only crosses functional synapses retrogradely through the hierarchical sequence of synaptic connections away from the infection site(2,3). Other PRV strains have distinct microbiological properties and may be transported in both directions (PRV-Becker and PRV-Kaplan)(4,5). This protocol will deal exclusively with PRV152. By delivering the virus at a peripheral site, such as muscle, it is possible to limit the entry of the virus into the brain through a specific set of neurons. The resulting pattern of eGFP signal throughout the brain then resolves the neurons that are connected to the initially infected cells. As the distributed nature of transsynaptic tracing with pseudorabies virus makes interpreting specific connections within an identified network difficult, we present a sensitive and reliable method employing biotinylated dextran amines (BDA) and cholera toxin subunit b (CTb) for confirming the connections between cells identified using PRV152. Immunochemical detection of BDA and CTb with peroxidase and DAB (3, 3'-diaminobenzidine) was chosen because they are effective at revealing cellular processes including distal dendrites(6-11).
Resumo:
The present randomized, placebo-controlled double-blind multicenter study included a population of 36 subjects with frequent recurrences (at least once a month) of herpes labialis. Most of the patients had failed to respond adequately to previous treatment with other therapeutic tools, including acyclovir. Either 50 mg of thymopentin or of placebo was administered 3 times a week, by the subcutaneous route, for 6 weeks. Subsequently, the patients were observed for nearly 6 months on the average. The results achieved with thymopentin for the individual parameters were significantly superior to those obtained with placebo; thus significant improvement was seen in patients on thymopentin in the duration of the longest symptomfree period (prolonged from 2.1 weeks to 20.9 weeks, p = 0.000), in the number of relapses (reduced from 1.6 to 0.4 episodes/month, p = 0.001), and in the total duration of herpes symptoms per month (shortened from 2.0 to 0.3 weeks, p = 0.000). Placebo treatment also resulted in considerable improvement (p < 0.05 or 0.01), but was significantly inferior to the improvement obtained with thymopentin. The longest symptomfree period in the placebo group was prolonged from 2.4 to 11.2 weeks. The number of relapses per month was reduced from 1.4 to 0.8, and the total duration of herpes symptoms per month from 2 to 0.9 weeks. The results of intergroup analyses, in which the observed parameters and the improvement achieved in either group were compared, significantly favored thymopentin treatment. The effect of thymopentin was in all but one parameters superior to that of placebo and highly significant (p < 0.01). © 1985 Humana Press Inc.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
Solder materials are used to provide a connection between electronic components and printed circuit boards (PCBs) using either the reflow or wave soldering process. As a board assembly passes through a reflow furnace the solder (initially in the form of solder paste) melts, reflows, then solidifies, and finally deforms between the chip and board. A number of defects may occur during this process such as flux entrapment, void formation, and cracking of the joint, chip or board. These defects are a serious concern to industry, especially with trends towards increasing component miniaturisation and smaller pitch sizes. This paper presents a modelling methodology for predicting solder joint shape, solidification, and deformation (stress) during the assembly process.
Resumo:
A computational model of solder joint formation and the subsequent cooling behaviour is described. Given the rapid changes in the technology of printed circuit boards, there is a requirement for comprehensive models of solder joint formation which permit detailed analysis of design and optimization options. Solder joint formation is complex, involving a range of interacting phenomena. This paper describes a model implementation (as part of a more comprehensive framework) to describe the shape formation (conditioned by surface tension), heat transfer, phase change and the development of elastoviscoplastic stress. The computational modelling framework is based upon mixed finite element and finite volume procedures, and has unstructured meshes enabling arbitrarily complex geometries to be analysed. Initial results for both through-hole and surface-mount geometries are presented.
Resumo:
The attachment of electronic components to printed circuit boards using solder material is a complex process. This paper presents a novel modeling methodology, which integrates the governing physics taking place. Multiphysics modeling technology, imbedded into the simulation tool—PHYSICA is used to simulate fluid flow, heat transfer, solidification, and stress evolution in an integrated manner. Results using this code are presented, detailing the mechanical response of two solder materials as they cool, solidify and then deform. The shape that a solder joint takes upon melting is predicted using the SURFACE EVOLVER code. Details are given on how these predictions can be used in the PHYSICA code to provide a modeling route by which the shape, solidification history, and resulting stress profiles can be predicted.
Resumo:
This paper details and demonstrates integrated optimisation-reliability modelling for predicting the performance of solder joints in electronic packaging. This integrated modelling approach is used to identify efficiently and quickly the most suitable design parameters for solder joint performance during thermal cycling and is demonstrated on flip-chip components using “no-flow” underfills. To implement “optimisation in reliability” approach, the finite element simulation tool – PHYSICA, is coupled with optimisation and statistical tools. This resulting framework is capable of performing design optimisation procedures in an entirely automated and systematic manner.
Resumo:
The relationship between the damage caused at different thermal cycles is very important. The whole of accelerated thermal cycle testing is based on the premise that damage at one cycle is representative of damage at a different cycle. In this paper, the relative damage caused by six thermal cycle profiles are predicted using Finite Element (FE) modelling and the results validated against experiments. Both creep strain and strain energy density were used as damage indicators and creep strain was found to correlate better with experiment. The validated FE model is then used to investigate the effect of altering each of the thermal profile parameters (ramp and swell times, hot and cold temperatures). The components used for testing are surface mount resistors - 1206, 0805 and 0603. The solders investigated are eutectic SnAgCu and eutectic SnAg.
Resumo:
Flip chip interconnections using anisotropic conductive film (ACF) are now a very attractive technique for electronic packaging assembly. Although ACF is environmentally friendly, many factors may influence the reliability of the final ACF joint. External mechanical loading is one of these factors. Finite element analysis (FEA) was carried out to understand the effect of mechanical loading on the ACF joint. A 3-dimensional model of adhesively bonded flip chip assembly was built and simulations were performed for the 3-point bending test. The results show that the stress at its highest value at the corners, where the chip and ACF were connected together. The ACF thickness was increased at these corner regions. It was found that higher mechanical loading results in higher stress that causes a greater gap between the chip and the substrate at the corner position. Experimental work was also carried out to study the electrical reliability of the ACF joint with the applied bending load. As per the prediction from FEA, it was found that at first the corner joint failed. Successive open joints from the corner towards the middle were also noticed with the increase of the applied load.