982 resultados para Diffractive optics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

反射式光栅对是一种具有负色散性质的器件,可用于飞秒激光脉冲的压缩和展宽,具有无材料色散的优点。给出了一种基于多台阶反射光栅的脉冲压缩装置。该装置为倍密度光栅结构,由两个周期分别为40μm和20μm的四台阶反射式光栅组成。实验得到的衍射效率可以达到70%以上,输入脉冲经过两个光栅的衍射后会按原路返回,从而达到色散补偿的效果。利用此压缩装置,脉冲宽度为66.8 fs的输入脉冲压缩至接近傅里叶变换极限脉冲,即46.6 fs,由此证明只要多台阶光栅效率足够高,此装置就有可能成为不同于棱镜对进行飞秒脉冲腔内和腔外压缩的另一种途径。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

光子晶体光纤的出现,为高功率光纤激光器的关键技术-大模区光纤的实现提供了新途径。基于铒镱共掺磷酸盐材料的包层掺杂新结构出现,为实现更加紧凑的光纤激光器提供了可能。常规高功率光纤激光器中的抽运技术,谐振腔技术和相干组束技术也在不断融入高功率光子晶体光纤激光器。高功率光子晶体光纤激光器的调Q和锁模输出也已经实现。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze mutual alignment errors due to wave-front aberrations. To solve the central obscured problem, we introduce modified Zernike polynomials, which are a set of complete orthogonal polynomials. It is found that different aberrations have different effects on mutual alignment errors. Some aberrations influence only the line of sight, while some aberrations influence both the line of sight and the intensity distributions. (c) 2005 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

根据透镜的傅里叶变换性质,提出了采用光学傅里叶变换加级联光学成像放大并结合有限口径接收的方法来实现自由空间激光光束远距离传输的实验室模拟。由此原理设计了自由空间激光远距离传输模拟装置,该装置主要由大口径、长焦距的傅里叶变换平行光管和三级成像放大镜所组成,最大等效传输距离达2.4×10^5km,可用于星间激光通信终端综合通信性能的评估,在设定的误码率下测量终端可能的通信距离,或者在设定的作用通信距离下检测通信的误码率。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

星间激光通讯中,精跟踪起着十分重要的作用,而精密偏转镜(FSM)是精跟踪系统中最为关键的部件.基于光学矢量反射定律,推导得到了FSM的精确光学特性,这一特性为精跟踪控制系统提供了精确的理论依据.设计了基于FSM精确光学特性的精跟踪控制系统,对系统整定所用的单纯形法进行了两点重要改进,并对所设计的精跟踪系统进行了数字模拟,由此实现了对FSM的精确控制,提高了精跟踪系统的精确性;将光学衍射超分辨原理应用到星间激光通讯中.利用三区位相光瞳滤波器的超分辨性能,改变光学系统的点扩散函数,从而改变接收端焦平面上的光强

Relevância:

10.00% 10.00%

Publicador:

Resumo:

介绍了光纤环形镜的工作原理,讨论了近年来其在高速光开关,波分复用器以及特性测量等领域的若干应用研究.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz, 3 cm-1 to 300 cm-1, or 3000 μm to 30 μm) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 cm-1) and the mid-IR (400 - 4000 cm-1). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with ~10 GHz (~0.3 cm-1) resolution.

Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm-1 (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice.

To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoiumbased THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 cm-1), in exact agreement with the fundamental transition frequency of the υ4 vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies.

To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab. We report the first results from an experiment using a plasma-based THz source for nonlinear spectroscopy that has the potential to enable nonlinear THz spectra with a sub-100 fs temporal resolution, and how the optics involved in the plasma mechanism can enable THz pulse shaping. Finally, we discuss how a single-shot THz detection scheme could improve the acquisition of THz data and how such a scheme could be implemented in the Blake lab. The instruments developed herein will hopefully remain a part of the groups core competencies and serve as building blocks for the next generation of THz instrumentation that pushes the frontiers of both chemistry and the scientific enterprise as a whole.