995 resultados para Design imaging
Resumo:
The comparison of consecutively manufactured tools and firearms has provided much, but not all, of the basis for the profession of firearm and toolmark examination. The authors accept the fundamental soundness of this approach but appeal to the experimental community to close two minor gaps in the experimental procedure. We suggest that "blinding" and attention to appropriateness of other experimental conditions that would consolidate the foundations of our profession. We do not suggest that previous work is unsound.
Resumo:
Background: Distinguishing postmortem gas accumulations in the body due to natural decomposition and other phenomena such as gas embolism can prove a difficult task using purely Multi-Detector Computed Tomography (MDCT). The Radiological Alteration Index (RAI) was created with the intention to be able to identify bodies undergoing the putrefaction process based on the quantity of gas detected within the body. The flaw in this approach is the inability to absolutely determine putrefaction as the origin of gas volumes in cases of moderate alteration. The aim of the current study is to identify percentage compositions of O2, N2, CO2 and the presence of gases such as H2 and H2S within these sampling sites in order to resolve this complication. Materials and methods: All cases investigated in our University Center of Legal Medicine are undergoing a Post-Mortem Computed Tomography (PMCT)-scan before external examination or autopsy as a routine investigation. In the obtained images, areas of gas were characterized as 0, I, II or III based on the amount of gas present according to the RAI (1). The criteria for these characterizations were dependent of the site of gas, for example thoracic and abdominal cavities were graded as I (1 - 3cm gas), II (3 - 5cm gas) and III (>5cm gas). Cases showing gaseous sites with grade II or III were selected for this study. The sampling was performed under CT-guidance to target the regions to be punctured. Luer-lock PTFE syringes equipped with a three-way valve and needles were used to sample the gas directly (2). Gaseous samples were then analysed using gas chromatography coupled to a thermal conductivity detector (GC-TCD). The components present in the samples were expressed as a percentage of the overall gas present. Results: Up to now, we have investigated more than 40 cases using our standardized procedure for sampling and analysis of gas. O2, N2 and CO2 were present in most samples. The following distributions were found to correlate to gas origins of gas embolism/scuba diving accidents, trauma and putrefaction: ? Putrefaction → O2 = 1 - 5%; CO2 > 15%; N2 = 10 - 70%; H2 / H2S / CH4 variable presence ? Gas embolism/Scuba diving accidents → O2 and N2= varying percentages; CO2 > 20% ? Trauma → O2 = small percentage; CO2 < 15%; N2 > 65% H2 and H2S indicated levels of putrefaction along with methane which can also gauge environmental conditions or conditions of body storage/burial. Many cases showing large RAI values (advanced alteration) did reveal a radiological diagnosis which was in concordance with the interpretation of the gas composition. However, in certain cases (gas embolism, scuba divers) radiological interpretation was not possible and only chemical gas analysis was found to lead to the correct diagnosis, meaning that it provided complementary information to the radiological diagnosis. Conclusion: Investigation of postmortem gases is a useful tool to determine origin of gas generation which can aid the diagnosis of the cause of death. Levels of gas can provide information on stage of putrefaction and help to perform essential medico-legal diagnosis such as vital gas embolism.
Resumo:
Purpose: To evaluate the feasibility, determine the optimal b-value, and assess the utility of 3-T diffusion-weighted MR imaging (DWI) of the spine in differentiating benign from pathologic vertebral compression fractures.Methods and Materials: Twenty patients with 38 vertebral compression fractures (24 benign, 14 pathologic) and 20 controls (total: 23 men, 17 women, mean age 56.2years) were included from December 2010 to May 2011 in this IRB-approved prospective study. MR imaging of the spine was performed on a 3-T unit with T1-w, fat-suppressed T2-w, gadolinium-enhanced fat-suppressed T1-w and zoomed-EPI (2D RF excitation pulse combined with reduced field-of-view single-shot echo-planar readout) diffusion-w (b-values: 0, 300, 500 and 700s/mm2) sequences. Two radiologists independently assessed zoomed-EPI image quality in random order using a 4-point scale: 1=excellent to 4=poor. They subsequently measured apparent diffusion coefficients (ADCs) in normal vertebral bodies and compression fractures, in consensus.Results: Lower b-values correlated with better image quality scores, with significant differences between b=300 (mean±SD=2.6±0.8), b=500 (3.0±0.7) and b=700 (3.6±0.6) (all p<0.001). Mean ADCs of normal vertebral bodies (n=162) were 0.23, 0.17 and 0.11×10-3mm2/s with b=300, 500 and 700s/mm2, respectively. In contrast, mean ADCs were 0.89, 0.70 and 0.59×10-3mm2/s for benign vertebral compression fractures and 0.79, 0.66 and 0.51×10-3mm2/s for pathologic fractures with b=300, 500 and 700s/mm2, respectively. No significant difference was found between ADCs of benign and pathologic fractures.Conclusion: 3-T DWI of the spine is feasible and lower b-values (300s/mm2) are recommended. However, our preliminary results show no advantage of DWI in differentiating benign from pathologic vertebral compression fractures.
Resumo:
Objectives: Skin can be partially regenerated after full thickness defects by collagen matrices, In this study, we identified the main limitations of induced regeneration aiming to improve the design of dermal matrices. Methods: Single mice received a 1 cm2, full thickness skin wound on the dorsum, which were grafted with collagen-GAG matrices or left ungrafted. The healing modulation induced by the collagen-GAG matrices was compared to spontaneous healing and to custom designed, bioactive, poly-N-Acetyl- Glucosamine (NAG) matrices. Wound staging was based on macroscopic, histological and immunhistochemical analysis on days 3, 7, 10 and 21 post wounding. Results: Cell density was higher in spontaneously granulating wounds compared to grafted wounds. While grafted wounds exhibited increased levels of cell proliferation on days 7 and 10, vascularity was dramatically reduced. NAG scaffolds accelerated both angiogenesis and wound re-epithelialization. Conclusions: Since slow integration and revascularization severely limit the engraftment of clinically used dermal scaffolds, the design of dermal matrices using bioactive materials represent the next step in skin regeneration.
Resumo:
ABSTRACT: BACKGROUND: There is no recommendation to screen ferritin level in blood donors, even though several studies have noted the high prevalence of iron deficiency after blood donation, particularly among menstruating females. Furthermore, some clinical trials have shown that non-anaemic women with unexplained fatigue may benefit from iron supplementation. Our objective is to determine the clinical effect of iron supplementation on fatigue in female blood donors without anaemia, but with a mean serum ferritin </= 30 ng/ml. METHODS/DESIGN: In a double blind randomised controlled trial, we will measure blood count and ferritin level of women under age 50 yr, who donate blood to the University Hospital of Lausanne Blood Transfusion Department, at the time of the donation and after 1 week. One hundred and forty donors with a ferritin level </= 30 ng/ml and haemoglobin level >/= 120 g/l (non-anaemic) a week after the donation will be included in the study and randomised. A one-month course of oral ferrous sulphate (80 mg/day of elemental iron) will be introduced vs. placebo. Self-reported fatigue will be measured using a visual analogue scale. Secondary outcomes are: score of fatigue (Fatigue Severity Scale), maximal aerobic power (Chester Step Test), quality of life (SF-12), and mood disorders (Prime-MD). Haemoglobin and ferritin concentration will be monitored before and after the intervention. DISCUSSION: Iron deficiency is a potential problem for all blood donors, especially menstruating women. To our knowledge, no other intervention study has yet evaluated the impact of iron supplementation on subjective symptoms after a blood donation. TRIAL REGISTRATION: NCT00689793.
Resumo:
BACKGROUND: To test the hypothesis that intervals with superior beat-to-beat coronary artery repositioning precision exist in the cardiac cycle, to design a coronary MR angiography (MRA) methodology in response, and to ascertain its performance. METHODS: Coronary repositioning precision in consecutive heartbeats was measured on x-ray coronary angiograms of 17 patients and periods with the highest repositioning precision were identified. In response, the temporal order of coronary MRA pulse sequence elements required modification and the T2 -prep now follows (T2 -post) rather than precedes the imaging part of the sequence. The performance of T2 -post was quantitatively compared (signal-to-noise [SNR], contrast-to-noise [CNR], vessel sharpness) to that of T2 -prep in vivo. RESULTS: Coronary repositioning precision is <1 mm at peak systole and in mid diastole. When comparing systolic T2 -post to diastolic T2 -prep, CNR and vessel sharpness remained unchanged (both P = NS) but SNR for muscle and blood increased by 104% and 36% (both P < 0.05), respectively. CONCLUSION: Windows with improved coronary repositioning precision exist in the cardiac cycle: one in peak systole and one in mid diastole. Peak-systolic imaging necessitates a re-design of conventional coronary MRA pulse sequences and leads to image quality very similar to that of conventional mid-diastolic data acquisition but improved SNR. J. Magn. Reson. Imaging 2015;41:1251-1258. © 2014 Wiley Periodicals, Inc.
Resumo:
SUMMARY : Eukaryotic DNA interacts with the nuclear proteins using non-covalent ionic interactions. Proteins can recognize specific nucleotide sequences based on the sterical interactions with the DNA and these specific protein-DNA interactions are the basis for many nuclear processes, e.g. gene transcription, chromosomal replication, and recombination. New technology termed ChIP-Seq has been recently developed for the analysis of protein-DNA interactions on a whole genome scale and it is based on immunoprecipitation of chromatin and high-throughput DNA sequencing procedure. ChIP-Seq is a novel technique with a great potential to replace older techniques for mapping of protein-DNA interactions. In this thesis, we bring some new insights into the ChIP-Seq data analysis. First, we point out to some common and so far unknown artifacts of the method. Sequence tag distribution in the genome does not follow uniform distribution and we have found extreme hot-spots of tag accumulation over specific loci in the human and mouse genomes. These artifactual sequence tags accumulations will create false peaks in every ChIP-Seq dataset and we propose different filtering methods to reduce the number of false positives. Next, we propose random sampling as a powerful analytical tool in the ChIP-Seq data analysis that could be used to infer biological knowledge from the massive ChIP-Seq datasets. We created unbiased random sampling algorithm and we used this methodology to reveal some of the important biological properties of Nuclear Factor I DNA binding proteins. Finally, by analyzing the ChIP-Seq data in detail, we revealed that Nuclear Factor I transcription factors mainly act as activators of transcription, and that they are associated with specific chromatin modifications that are markers of open chromatin. We speculate that NFI factors only interact with the DNA wrapped around the nucleosome. We also found multiple loci that indicate possible chromatin barrier activity of NFI proteins, which could suggest the use of NFI binding sequences as chromatin insulators in biotechnology applications. RESUME : L'ADN des eucaryotes interagit avec les protéines nucléaires par des interactions noncovalentes ioniques. Les protéines peuvent reconnaître les séquences nucléotidiques spécifiques basées sur l'interaction stérique avec l'ADN, et des interactions spécifiques contrôlent de nombreux processus nucléaire, p.ex. transcription du gène, la réplication chromosomique, et la recombinaison. Une nouvelle technologie appelée ChIP-Seq a été récemment développée pour l'analyse des interactions protéine-ADN à l'échelle du génome entier et cette approche est basée sur l'immuno-précipitation de la chromatine et sur la procédure de séquençage de l'ADN à haut débit. La nouvelle approche ChIP-Seq a donc un fort potentiel pour remplacer les anciennes techniques de cartographie des interactions protéine-ADN. Dans cette thèse, nous apportons de nouvelles perspectives dans l'analyse des données ChIP-Seq. Tout d'abord, nous avons identifié des artefacts très communs associés à cette méthode qui étaient jusqu'à présent insoupçonnés. La distribution des séquences dans le génome ne suit pas une distribution uniforme et nous avons constaté des positions extrêmes d'accumulation de séquence à des régions spécifiques, des génomes humains et de la souris. Ces accumulations des séquences artéfactuelles créera de faux pics dans toutes les données ChIP-Seq, et nous proposons différentes méthodes de filtrage pour réduire le nombre de faux positifs. Ensuite, nous proposons un nouvel échantillonnage aléatoire comme un outil puissant d'analyse des données ChIP-Seq, ce qui pourraient augmenter l'acquisition de connaissances biologiques à partir des données ChIP-Seq. Nous avons créé un algorithme d'échantillonnage aléatoire et nous avons utilisé cette méthode pour révéler certaines des propriétés biologiques importantes de protéines liant à l'ADN nommés Facteur Nucléaire I (NFI). Enfin, en analysant en détail les données de ChIP-Seq pour la famille de facteurs de transcription nommés Facteur Nucléaire I, nous avons révélé que ces protéines agissent principalement comme des activateurs de transcription, et qu'elles sont associées à des modifications de la chromatine spécifiques qui sont des marqueurs de la chromatine ouverte. Nous pensons que lés facteurs NFI interagir uniquement avec l'ADN enroulé autour du nucléosome. Nous avons également constaté plusieurs régions génomiques qui indiquent une éventuelle activité de barrière chromatinienne des protéines NFI, ce qui pourrait suggérer l'utilisation de séquences de liaison NFI comme séquences isolatrices dans des applications de la biotechnologie.
Resumo:
The future of antimalarial chemotherapy is particulary alarming in view of the spread of parasite cross-resistances to drugs that are not even structurally related. Only the availability of new pharmacological models will make it possible to select molecules with novel mechanisms of action, thus delaving resistance and allowing the development of new chemotherapeutic strategies. We reached this objective in mice. Our approach is hunged on fundamental and applied research begun in 1980 to investigate to phospholipid (PL) metabolism of intraerythrocytic Plasmodium. This metabolism is abundant, specific and indispensable for the production of Plasmodium membranes. Any drug to interfere with this metabolism blocks parasitic development. The most effective interference yet found involves blockage of the choline transporter, which supplies Plasmodium with choline for the synthesis of phosphatidylcholine, its major PL, this is a limiting step in the pathway. The drug sensitivity thereshold is much lower for the parasite, which is more dependent on this metabolism than host cells. The compounds show in vitro activity against P. falciparum at 1 to 10 nM. They show a very low toxicity against a lymphblastoid cell line, demonstrating a total abscence of correlation between growth inhibition of parasites and lymphoblastoid cells. They show antimalarial activity in vivo, in the P. berghei or P. chabaudi/mouse system, at doses 20-to 100-fold lower than their in acute toxicity limit. The bioavailability of a radiolabeled form of the product seemed to be advantageous (slow blood clearance and no significant concentration in tissues). Lastly, the compounds are inexpensive to produce. They are stable and water-soluble.
Resumo:
Coronary magnetic resonance angiography (MRA) is a technique aimed at establishing a noninvasive test for the assessment of significant coronary stenoses. There are certain boundary conditions that have hampered the clinical success of coronary MRA and coronary vessel wall imaging. Recent advances in hardware and software allow for consistent visualization of the proximal and mid portions of the native coronary arteries. Current research focuses on the use of intravascular MR contrast agents and black blood coronary angiography. One common goal is to create a noninvasive test which might allow for screening for major proximal and mid coronary artery disease. These novel approaches will represent a major step forward in diagnostic cardiology.
Resumo:
Energy metabolism measurements in spinal cord tumors, as well as in osseous spinal tumors/metastasis in vivo, are rarely performed only with molecular imaging (MI) by positron emission tomography (PET). This imaging modality developed from a small number of basic clinical science investigations followed by subsequent work that influenced and enhanced the research of others. Apart from precise anatomical localization by coregistration of morphological imaging and quantification, the most intriguing advantage of this imaging is the opportunity to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Most importantly, MI represents one of the key technologies in translational molecular neuroscience research, helping to develop experimental protocols that may later be applied to human patients. PET may help monitor a patient at the vertebral level after surgery and during adjuvant treatment for recurrent or progressive disease. Common clinical indications for MI of primary or secondary CNS spinal tumors are: (i) tumor diagnosis, (ii) identification of the metabolically active tumor compartments (differentiation of viable tumor tissue from necrosis) and (iii) prediction of treatment response by measurement of tumor perfusion or ischemia. While spinal PET has been used under specific circumstances, a question remains as to whether the magnitude of biochemical alterations observed by MI in CNS tumors in general (specifically spinal tumors) can reveal any prognostic value with respect to survival. MI may be able to better identify early disease and to differentiate benign from malignant lesions than more traditional methods. Moreover, an adequate identification of treatment effectiveness may influence patient management. MI probes could be developed to image the function of targets without disturbing them or as treatment to modify the target's function. MI therefore closes the gap between in vitro and in vivo integrative biology of disease. At the spinal level, MI may help to detect progression or recurrence of metastatic disease after surgical treatment. In cases of nonsurgical treatments such as chemo-, hormone- or radiotherapy, it may better assess biological efficiency than conventional imaging modalities coupled with blood tumor markers. In fact, PET provides a unique possibility to correlate topography and specific metabolic activity, but it requires additional clinical and experimental experience and research to find new indications for primary or secondary spinal tumors.
Resumo:
The goal of this paper is to reexamine the optimal design and efficiency of loyalty rewards in markets for final consumption goods. While the literature has emphasized the role of loyalty rewards as endogenous switching costs (which distort the efficient allocation of consumers), in this paper I analyze the ability of alternative designs to foster consumer participation and increase total surplus. First, the efficiency of loyalty rewards depend on their specific design. A commitment to the price of repeat purchases can involve substantial efficiency gains by reducing price-cost margins. However, discount policies imply higher future regular prices and are likely to reduce total surplus. Second, firms may prefer to set up inefficient rewards (discounts), especially in those circumstances where a commitment to the price of repeat purchases triggers Coasian dynamics.
Resumo:
Puropse/Aim: To learn about the developement of post mortem CT angiography, its indications, benefits, pitfalls and practical application. Content Organization: A. Developement of post mortem CT angiography B. Technical prerequisites C. Practical application of post mortem CT angiography (preparation of the body, injection of contrast agent, examination protocol) D. Indications and benefits (including a comparison with conventional autopsy) E. Interpretation of imaging data (with case demonstrations) F. Artifacts, pitfalls and limitations G. Current and potential future use. Summary: This exhibit demonstrates the developement, application and interpretation of post mortem CT angiography. Teaching points: 1. post mortem CT angiography is feasible and useful for identification of the cause of death 2. depending on the indication it can be superior to autopsy 3. limitations and artifacts need to be known for interpreta