983 resultados para Dendritic Spines
Resumo:
Ghilianella beckeri n. sp. of Emesinae from Rondônia State, Brazil is described. The most similar species to G. beckeri sp. nov. is G. approximata (McAtee & Malloch 1925). Males of G . beckeri n. sp. can be separated from G. approximata because the latter has: (1) seventh tergite much shorter, slightly surpassing pygophore, and not wrinkled; (2), bifurcated medial posterior process of the pygophore; and (3) parameres without spines. Females of G. approximata can be distinguished from those of G . beckeri n. sp. since they have: (1) the expansions of the fifth abdominal tergum distinctly within lateral margins of disk; (2) the seventh tergite longer than wide; and (3) the eighth tergite semicircular and lightly carinate medially.
Resumo:
Hydrometra argentina Berg, 1879, H. caraiba Guérin-Méneville, 1857 and H. guianana Hungerford & Evans, 1934 are newly recorded in the Amazon River floodplain, Brazil. A redescription of H. argentina is also given, as the original description is incomplete. A key to the three known species occurring in this region is provided. Hydrometra argentina can be distinguished from H. caraiba and H. guianana by the body length smaller than 12.50 mm, anteoculus/postoculus ratio between 1.80 and 2.00, clypeus narrow and conical, metacetabulum with no circular pits, and projections on male abdominal sternite VI in the shape of simple spines. The other species can be distinguished mainly by the anteoculus/postoculus ratio and position of projections on male abdominal sternite VI.
Resumo:
A highly efficient synthesis of the biologically important fluorescent probe dansyl α-GalCer is presented. Key in our strategy is the incorporation of the fluorescent dansyl group at an early stage in the synthesis to facilitate in the monitoring and purification of intermediates via TLC and flash column chromatography, respectively, and the use of a high yielding α-selective glycosylation reaction between the phytosphingosine lipid and a galactosyl iodide donor. The ability of dansyl α-GalCer to activate iNKT cells and to serve as a fluorescent marker for the uptake of glycolipid by dendritic cells is also presented.
Resumo:
The common feature of urea cycle diseases (UCD) is a defect in ammonium elimination in liver, leading to hyperammonemia. This excess of circulating ammonium eventually reaches the central nervous system, where the main toxic effects of ammonium occur. These are reversible or irreversible, depending on the age of onset as well as the duration and the level of ammonium exposure. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood, and surviving UCD patients may develop cortical and basal ganglia hypodensities, cortical atrophy, white matter atrophy or hypomyelination and ventricular dilatation. While for a long time, the mechanisms leading to these irreversible effects of ammonium exposure on the brain remained poorly understood, these last few years have brought new data showing in particular that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy, nitric oxide synthesis, axonal and dendritic growth, signal transduction pathways, as well as K(+) and water channels. All these effects of ammonium on CNS may eventually lead to energy deficit, oxidative stress and cell death. Recent work also proposed neuroprotective strategies, such as the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine, to counteract the toxic effects of ammonium. Better understanding the pathophysiology of ammonium toxicity to the brain under UCD will allow the development of new strategies for neuroprotection.
Resumo:
Cobalt-labelled motoneuron dendrites of the frog spinal cord at the level of the second spinal nerve were photographed in the electron microscope from long series of ultrathin sections. Three-dimensional computer reconstructions of 120 dendrite segments were analysed. The samples were taken from two locations: proximal to cell body and distal, as defined in a transverse plane of the spinal cord. The dendrites showed highly irregular outlines with many 1-2 microns-long 'thorns' (on average 8.5 thorns per 100 microns 2 of dendritic area). Taken together, the reconstructed dendrite segments from the proximal sites had a total length of about 250 microns; those from the distal locations, 180 microns. On all segments together there were 699 synapses. Nine percent of the synapses were on thorns, and many more close to their base on the dendritic shaft. The synapses were classified in four groups. One third of the synapses were asymmetric with spherical vesicles; one half were symmetric with spherical vesicles; and one tenth were symmetric with flattened vesicles. A fourth, small class of asymmetric synapses had dense-core vesicles. The area of the active zones was large for the asymmetric synapses (median value 0.20 microns 2), and small for the symmetric ones (median value 0.10 microns 2), and the difference was significant. On average, the areas of the active zones of the synapses on thin dendrites were larger than those of synapses on large calibre dendrites. About every 4 microns 2 of dendritic area received one contact. There was a significant difference between the areas of the active zones of the synapses at the two locations. Moreover, the number per unit dendritic length was correlated with dendrite calibre. On average, the active zones covered more than 4% of the dendritic area; this value for thin dendrites was about twice as large as that of large calibre dendrites. We suggest that the larger active zones and the larger synaptic coverage of the thin dendrites compensate for the longer electrotonic distance of these synapses from the soma.
Resumo:
BACKGROUND: Adult neurogenesis occurs in the hippocampus of most mammals, including humans, and plays an important role in hippocampal-dependent learning. This process is highly regulated by neuronal activity and might therefore be vulnerable to anesthesia. In this article, the authors investigated this possibility by evaluating the impact of propofol anesthesia on mouse hippocampal neurons generated during adulthood, at two functionally distinct maturational stages of their development. METHODS: Adult-born hippocampal neurons were identified using the cell proliferation marker bromodeoxyuridine or a retroviral vector expressing the green fluorescent protein in dividing cells and their progenies. Eleven or 17 days after the labeling procedure, animals (n = 3-5 animals per group) underwent a 6-h-long propofol anesthesia. Twenty-one days after labeling, the authors analyzed the survival, differentiation, and morphologic maturation of adult-born neurons using confocal microscopy. RESULTS: Propofol impaired the survival and maturation of adult-born neurons in an age-dependent manner. Anesthesia induced a significant decrease in the survival of neurons that were 17 days old at the time of anesthesia, but not of neurons that were 11 days old. Similarly, propofol anesthesia significantly reduced the dendritic maturation of neurons generated 17 days before anesthesia, without interfering with the maturation of neurons generated 11 days before anesthesia. CONCLUSIONS: These results reveal that propofol impairs the survival and maturation of adult-born hippocampal neurons in a developmental stage-dependent manner in mice.
Resumo:
Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.