983 resultados para DIATOMS
Resumo:
In this preliminary biometric study of the calcareous nannofossil species Chiasmolithus expansus, Chiasmolithus oamaruensis, and Chiasmolithus altus from the upper middle Eocene to lower Oligocene of Sites 647 and 748, we document a complete gradation of forms among all three species. Chiasmolithus oamaruensis has significantly higher morphologic variance than the other species. The Chiasmolithus population at each site changes from C. expansus to C. oamaruensis and then to C. altus. This may not reflect a true evolutionary sequence because a major reversal in shape change of the central cross-bar structure accompanies this sequence, and because C. altus is morphologically closer to C. expansus than it is to C. oamaruensis. The change in the width of the cross-bar structure is primarily a result of changes in the alignment of the central connecting bar, rather than of changes in the cross-bar angle. At Site 748, two fluctuations in morphology produce sample populations intermediate between all three species. In addition, reported stratigraphic and paleogeographic occurrences of C. oamaruensis and C. altus show different latitudinal distributions. These morphological and distributional patterns may be explained by a continuous morphologic gradient between C. oamaruensis and C. altus, with C. oamaruensis occurring more commonly in cool-water paleoenvironments, and C. altus occurring more commonly in cold-water paleoenvironments. Thus, paleoenvironmental fluctuations at Site 748 may be the cause of the morphologic fluctuations in Chiasmolithus. This hypothesis can be tested against previously proposed evolutionary models by more detailed sampling of sections along a latitudinal transect.
Resumo:
Species composition, abundance, and biomass of phytoplankton in the surface water layer were determined at 10 stations in the central part of the Western Basin (WB) and at one station in the Eastern Basin (EB) of the Large Aral Sea. 42 algal species were found. Diatoms had the highest number of species. Similarity of phytoplankton composition in the WB was high, whereas phytoplankton composition in the WB and EB differed significantly. In WB abundance and biomass of phytoplankton varied from 826x10**3 to 6312x10**3 cells/l (aver. 1877x10**3 cells/l) and from 53 to 241 ?g C/l (aver. 95 ?g C/l). In EB the phytoplankton abundance was 915x10**3 cells/l and 93 ?g C/l. Vertical distribution of phytoplankton in upper 35 m was investigated at one station in WB. Maximum values of phytoplankton abundance and biomass were recorded under the thermocline at 20 m depth. Integrated biomass of phytoplankton was 14 g C/m**2.
Resumo:
50 m of Middle Eocene pure radiolarian ooze were drilled at ODP Site 660 in the equatorial East Atlantic, 80 km northeast of the Kane Gap. The oozes comprise a 10 m high and 2 km broad mound of seismic reverberations, covered by manganese-rich sediment, and contain trace amounts of sponge spicules and diatoms, negligible organic carbon (0.15%), clay, and variable amounts of pyrite. The yellow to pale brown silty sediments are relatively coarse-grained (30-45% coarser than 6 µm), little bioturbated, and commonly massive or laminated on a cm-scale. The unlithified radiolarian ooze may indicate an interval of high oceanic productivity, probably linked to a palaeoposition of Site 660 close to the equatorial upwelling belt during Middle Eocene time. The absence of organic matter, however, and both the laminated bedding and the mound-like structure of the deposit on the lower slope of a continental rise indicate deposition by relatively intense contour currents of oxygen-rich deep water, which passed through the Kane Gap, winnowed the fine clay fraction, and prevented the preservation of organic carbon. The ooze may be either a contourite-lag deposit, or a contourite accumulation of displaced radiolarians, originating south of the Kane Gap and being deposited in its northern lee, thus documenting the passage of a strong cross-equatorial bottom-water current formed near Antarctica. These Eocene contourites may be an analogue for ancient radiolarites in the Tethyan Ocean.
Resumo:
Thermokarst lakes in the Siberian Arctic contain sediment archives that can be used for paleoenvironmental inference. Until now, however, there has been no study from the inner Lena River Delta with a focus on diatoms. The objective of this study was to investigate how the diatom community in a thermokarst lake responded to past limnogeological changes and what specific factors drove variations in the diatom assemblage. We analysed fossil diatom species, organic content, grain-size distribution and elemental composition in a sediment core retrieved in 2009 from a shallow thermokarst lake in the Arga Complex, western Lena River Delta. The core contains a 3,000-year record of sediment accumulation. Shifts in the predominantly benthic and epiphytic diatom species composition parallel changes in sediment characteristics. Paleoenvironmental and limnogeological development, inferred from multiple biological and sedimentological variables, are discussed in the context of four diatom zones, and indicate a strong relation between changes in the diatom assemblage and thermokarst processes. We conclude that limnogeological and thermokarst processes such as lake drainage, rather than direct climate forcing, were the main factors that altered the aquatic ecosystem by influencing, for example, habitat availability, hydrochemistry, and water level.