993 resultados para Cultivation environment
Resumo:
Process conditions for cell cultures derived from conchocelis of female red macroalga Porphyra haitanensis were optimized in an illuminated 0.3-l bubble-column photobioreactor, using CO2 in air as the sole carbon source during a 20-day cultivation period. It reached the highest growth rate when the initial cell density was 700 mg l(-1)(dry weight), the optional aeration rate was 1.2 v/v/min, inorganic nitrate concentration was 15 mM and inorganic phosphate concentration was 0.6 mM. This is the first reported bioreactor cultivation study of cell cultures derived from conchocelis of Porphyra haitanensis.
Resumo:
Based on the study of palaeo-environmental evolution in the shelves of the Eastern China Seas, the concept of ''shelf desertization'' in the late stage of Upper Pleistocene is defined; the environmental background and evolutionary process of shelf desertization are analysed. Study on the records of subbottom profiling and the data of core samples from shelf areas revealed that during low sea-level stages, the sedimentary environment in the exposed shelf plains was dominated by aeolian depositional process under cold and dry climatic conditions, i.e. under the action of strong winter-monsoon winds. Parts of the exposed marine strata were disintegrated, and aeolian sand dunes were formed on the disintegrated marine deposits, from which the finer sediment grains were blown away by wind and deposited in the downwind areas to form the derivative loess deposits. Thus a desertization environmental system was formed in the exposed shelf plains of the Eastern China Seas.
Resumo:
The impact of the Huanghe (Yellow) River outflows on its estuary was investigated with river gauging and shipboard hydrographic observations. The river flux has been decreasing dramatically; the discharges of water and sediment in the 1990s dropped to 27.4% and 31.9% of those in the 1950s, respectively, resulting in frequent and lengthy events of downstream channel dry-up since the 1970s. There were accumulatively 897 zero-flow days during the 1990s in the river course below the Lijin Hydrological Station, 100 km upstream from the river mouth, which is 82.4% of that in 1972. As freshwater input decreases, river-borne nutrients to the estuarine increased significantly. Concentration of dissolved inorganic nitrogen (DIN) in the 1990s was four times of that in 1950s. Changes in amount and content of the riverine inputs have greatly affected the estuarine ecosystem. Over the past several decades, sea surface temperature and salinity in the estuary and its adjacent waters increased and their distribution pattern altered in response to the reduction of freshwater inflow. The distribution of and seasonal succession in nutrient concentrations in the surface layer have also changed with a shift of river outlet and the decrease in riverine nutrient loads. Furthermore, deterioration of estuarine ecosystem by less river input has decreased primary productivity in the deltaic region waters, and in turn depressed the fishery. (C) 2008 Published by Elsevier Ltd.
Resumo:
We collected fish abundance data in the Changjiang (Yangtze River) estuary and adjacent waters in November 1998, May 1999, November 2000, and May 2001. Using the data, we evaluated the characteristics of the fish assemblages at each site and investigated the effect of several environmental factors. We used a multivariate analysis, including community ordination methods such as detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA), and two-way indicator species analysis (TWINSPAN). We analyzed the biological community structure and environmental factors to determine their spatial distributions, temporal dynamics, and seasonal variations. Among the fish species, five exceeded 5% of the total abundance: Harpodon nehereus (42.82%), Benthosema pterotum (13.85%), Setipinna taty (11.64%), Thryssa kammalensis (9.17%) and Apogonichthys lineatus (6.49%). These were separated into four ecological assemblages: hypsithermal-saline, hypsithermal-brackish, hypothermal-brackish, and hypothermal-saline. We evaluated the degree of influence of environmental factors on the fish community. Our analyses suggested that environmental factors including water depth, salinity, turbidity, transparency, nutrient, and suspended matter formed a synthetic spatial gradient between the coastal and pelagic areas. Ecological and environmental factors changed temporally from 1998 to 2001, and drove the fish community succession. The environmental factors driving the fish community structure included bottom temperature, water depth, bottom and surface pH, surface total phosphorous, and bottom dissolved oxygen. This investigation was completed before completion of the Three Gorges Dam; therefore the results of this study provide an important foundation for evaluating the influence of the human activities.
Resumo:
This study was carried out in the Changjiang Estuary from 19 to 26 May 2003. Based on the data collected from 29 stations, including two anchor stations, phytoplankton taxonomic composition, abundance, diurnal variability and spatial distribution were examined. Eighty-seven species, including 54 species of diatoms and 16 red tide causative species, were identified. Average diversity index (H') and evenness (J) values were 1.04 and 0.40, respectively. A bloom in abundance of certain phytoplankton species, especially Prorocentrum dentatum and Skeletoneina costatum, was thought to be the cause of the low diversity index and evenness values. Total phytoplankton abundance averaged 6.75 x 10(5) cells 1(-1), and was much higher than previous investigation carried out in the same month in 1986. Abundance increased seaward showing a distinct spatial difference, and the dominant species varied with salinity. Correlation between phosphorus and abundance further supported the former conclusion that phosphorus is the controlling factor in phytoplankton growth in the Changjiang Estuary where light is not limiting. Based on the relationship between DO, pH and abundance, it is likely that the bloom was caused by rapid in situ growth of phytoplankton with high nutrients and sufficient light. The data also indicated that the duration of the bloom was not long and
Resumo:
Sediment is commonly considered as a source of phosphine, which is a highly toxic and reactive atmospheric trace gas. This study aims to investigate the seasonal and spatial distribution of matrix-bound phosphine (MBP) and its relationship with the environment in the Changjiang River Estuary. A total of 43 surface sediments were collected in four seasons of 2006, and concentrations of MBP and relative environmental factors were analyzed. MBP ranged from 1.93 to 94.86 ng kg(-1) dry weight (dw) with an average concentration of 17.14 ng kg(-1) dw. The concentrations of MBP in the tipper estuary were, higher than those in the lower estuary, which could be attributed to greater pollutant inputs in the upper estuary. The concentrations of MBP also varied with season, with November > August > May > February. Significant correlations existed between MBP and total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (W), organic carbon (OC), total nitrogen (TN), the grain size, and redox potential (Eh), suggesting that these sedimentary environmental characteristics played an important role in controlling the MBP levels in the sediments. Notably, there were positive linear relationships between the concentrations of soluble reactive phosphorus (SRP), TP, and chlorophyll a (Chl a) in bottom water and MBP in sediments. These relationships might be very complicated and need further exploration. This work is the first comprehensive study of the seasonal and spatial distribution of MBP in sediments and its relationships with environmental factors in a typical estuary, and will lead to deeper understanding of the phosphorus (P) biogeochemical cycle. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Data collected from 12 marine monitoring stations in Daya Bay from 1982 to 2004 reveal a substantial change in the ecological environment of this region. The average N/P ratio increased from 1.377 in 1985 to 49.09 in 2004. Algal species changed from 159 species of 46 genera in 1982 to 126 species of 44 genera in 2004. Major zooplankton species went from 46 species in 1983 to 36 species in 2004. The annual mean biomass of benthic animals was recorded at 123.10 gm(2) in 1982 and 126.68 g m(2) in 2004. Mean biomass and species of benthic animals near nuclear power plants ranged froth 317.9 g m(2) in 1991 to 45.24 g m(2) in 2004 and from 250 species in 1991 to 177 species in 2004. A total of 12-19 species of hermatypic corals and 13 species of mangrove plants were observed in Daya Bay from 1984 to 2002. 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fed fish farms produce large amounts of wastes, including dissolved inorganic nitrogen and phosphorus. In China, fish mariculture in coastal waters has been increasing since the last decade. However, there is no macroalgae commercially cultivated in north China in warm seasons. To exploit fish-farm nutrients as a resource input, and at the same time to reduce the risk of eutrophication, the high-temperature adapted red alga Gracilaria lemaneiformis (Bory) Dawson from south China was co-cultured with the fish Sebastodes fuscescens in north China in warm seasons. Growth and nutrient removal from fish culture water were investigated in laboratory conditions in order to evaluate the nutrient bioremediation capability of G. lemaneiformis. Feasibility of integrating the seaweed cultivation with the fed fish-cage aquaculture in coastal waters of north China was also investigated in field conditions. Laboratory seaweed/fish co-culture experiments showed that the seaweed was an efficient nutrient pump and could remove most nutrients from the system. Field cultivation trials showed that G. lemaneiformis grew very well in fish farming areas, at maximum growth rate of 11.03% day(-1). Mean C, N, and P contents in dry thalli cultured in Jiaozhou Bay were 28.9 +/- 1.1%, 4.17 +/- 0.11 % and 0.33 +/- 0.01 %, respectively. Mean N and P uptake rates of the thalli were estimated at 10.64 and 0.38 mu mol g(-1) dry weight h(-1), respectively. An extrapolation of the results showed that a 1-ha cultivation of the seaweed in coastal fish fanning waters would give an annual harvest of more than 70 t of fresh G. lemaneiformis, or 9 t dry materials; 2.5 t C would be produced, and simultaneously 0.22 t N and 0.03t P would be sequestered from the seawater by the seaweed. Results indicated that the seaweed is suitable as a good candidate for seaweed/fish integrated mariculture for bioremediation and economic diversification. The integration can benefit economy and environment in a sustainable manner in warm seasons in coastal waters of north China. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Susceptibility to stress corrosion cracking of X56 steel and its relationship with hydrogen permeation behaviour in atmospheric environment containing H2S was investigated by hydrogen permeation tests at a slow strain rate. The results show that: the fracture strain decreases with the decrease of strain rate under the same experimental conditions; the fracture strain also decreases with the increase of H2S concentration under the same strain rate, and the increased concentration of H2S has no significant effect on the hydrogen permeation in the first wet, etc. dry cycle, however has lead to increased hydrogen permeation in the later cycles. The SEM images of the fractured surfaces show clear evidences of enhanced stress corrosion cracking susceptibility by H2S.
Resumo:
Three kinds of steels were studied using electrically connected hanging specimen in the corrosion simulation device and offshore long scale hanging specimen. The experimental results obtained by the two methods show that the device can better reflect the offshore corrosion environment. A Ni-Cu-P steel specimen was studied through analysis of the specimen's corrosion products and corrosion types. The surface of the samples before and after the removal of the rust layer produced by these two methods were observed and compared after some experiments. The microstructure of the corrosion products under different marine environments were analyzed and compared through IR. It indicated good correlation between the electrically connected hanging specimen method and the long scale hanging specimen method.
Resumo:
The application of hot-dipped zinc and zinc-aluminum alloy coatings were introduced. Exposure tests of the steels with these coatings were conducted in the offshore atmosphere in Qingdao and Xiamen for 12 years separately. Effects of the coating thickness, alloy composition and atmospheric environment on the corrosion performance were studied. Results of the onsite exposure tests were compared with the results of a previous indoor salt spray accelerated corrosion tests. The study supports that zinc-aluminum alloy coatings are useful in providing better corrosion resistance and can be further developed for future applications.
Resumo:
Hydrogen permeation of 16Mn steel under a cyclic wet-dry condition was investigated by Devanathan-Stachurski's electrolytic cell with a membrane covered on the exit side by a nickel layer and the weight loss was measured for each wet-dry cycle. The results show that hydrogen permeation current change with different atmospheric environment: distilled water, seawater, and seawater containing 100 ppm H2S. The results show that seawater can induce an increase in the hydrogen permeation current due to the hydrolyzation reaction. And after the increase, equilibrium is reached due to the equilibrium of hydrolyzation reaction effect and the block of the rust layer. On the other hand, H2S contamination also can induce an increase in the maximum hydrogen permeation current due to the hydrolyzation reaction. And H2S contamination delays the time that hydrogen permeation is detected because of the formation of the FeS(1-x) film. The FeS(1-x) film can block the absorption of hydrogen onto the specimen surface. The surface potential change and the pH change of the metal surface control the hydrogen permeation current. And a clear linear correlation exists between the quantities of hydrogen permeated through the 16Mn steel and the weight loss. Based on the linear correlation, we monitored the corrosion rate by monitoring the hydrogen permeation current by a sensor outside. Good coherences were shown between results in laboratory and outside.
Resumo:
The formation of civilization, one of great marks in the history of human's society development, has been remained one of the hottest topics in the world. Many theories have been put ford to explain its causes and mechanisms. Although more attentions have been paid to its development, the role of environmental change should not be ignored. In this paper, the level of ancient farming productivity was analyzed, the mechanisms and the process of Chinese ancient civilization formation was explored, and some causes why Chinese ancient civilization shows many different features from other 5 ancient civilizations of the world was analyzed. The main results and conclusions are presented as followed. 1. Compared with the productivity level of other five ancient civilizations, the productivity of ancient China characterized by a feature of extensive not intensive cultivation was lower than that of other five ancient civilizations whose agriculture were based on irrigation. 2. The 5 5000 a B.P. cold event may have facilitated the formation of Egypt and Mesopotamian ancient civilizations and also have had an influence on the development of Neolithic culture in China. 3. The 4 000 a B.P. cold event, which may be the coldest period since the Younger Dryas cold event and signifies the changes from the early Holocene Climate Optimum to late Holocene in many regions of the world, resulted in the great migration of the Indo-European peoples from north Europe to other part of the World and the collapses of ancient civilizations in Egypt, Indus and the Mesopotamian and the collapse of five Neolithic cultures around central China. More important than that is the emergence of Chinese civilization during the same period. Many theories have been put ford to explain why it was in Zhongyuan area not other places whose Neolithic cultures seem more advanced that gave rise to civilization. For now no theory could explain it satisfiedly. Archaeological evidence clearly demonstrate that war was prevailed the whole China especially during the late Longshan culture period, so it seemed war has played a very important role in the emergence of China ancient civilization. Carneiro sees two conditions as essential to the formation of complex societies in concert with warfare, i.e. population growth and environmental circumscription. It was generally through that China couldn't evolved into the environmental circumscription and population pressure because China has extensive areas to live, but that depends on situations. The environmental circumscription area was formed due to the 4000a B.P. cold event and companied flooding disasters, while the population pressure is formed due to three factors; 1) population grow rapidly because of the suitable environment provided by the Holocene Optimum and thus laid its foundations for the ancient human population; 2) population pressure is also related to the primitive agricultural level characterized by extensive not intensive cultivation; 3) population pressure was mainly related to the great migrations of people to the same areas; 4) population pressure was also related to productivity decrease due to the 4 000a B.P. cold event. 4. When population pressure is formed, war is the most possible way to solve the intensions between population and the limited cultivated land and then resulted in the formation of civilization. In this way the climate change during the 4 000a B.P. cold event may have facilitated the emergence of Chinese ancient civilization. Their detailed relations could also be further understood in this way: The first birth places of China ancient civilization could be in Changjiang areas or (and) Daihai area, Shandong province rather than in central China and the emergence time of ancient civilization formed in central China should be delayed if the 4 000a B.P. cold event and companied flooding disasters didn't occurred.
Resumo:
Eolian deposits are important for paleoclimatic and paleoenvironmental reconstructions in arid and semi-arid regions. In China active sand dunes mainly occur in the northwest inland basins ,whereas deserts dominated by semi-stabilized sand dunes are mainly distributed in the northeastern semi-arid and sub-humid regions. Recent studies indicate that prompt desertification in northeastern China has been serious.Thus northeastern China is one of the key sites on which to study the history of past environmental changes. However, previous studies focused mainly on big scale environmental changes, whereas changes in the environment during the Holocene have not been well studied. This research uses optically stimulated luminescence to date fossil sand dunes in Hunshandake desert in order to offer the accurate time scale to reconstruct the history of eolian activity in the region. Furthermore,we compare this region with other deserts in northern China.The main conclusions is following: Active dune formation in northeastern China lasted from the Last Glacial Maximum to about 10 000aB.P. It has also been shown that the warm climate of the Holocene was interrupted by a cold/dry dune-forming episode at about 2 800-1 800aB.R. The Holocene Optimum occurred between 10 000-2 800aB.R, and a later warm/humid dune stabilization phase lasted from at least 1 900-1 500aB.R. The youngest age on the uppermost soil unit in Hunshandake desert yielded an age of 90aB.P.,on which the younger sand deposits,and the youngest age on the sand in Hulun Buir desert is 40aB.R. The mean annual precipitation of these regions is up to 450 mm. But these deserts locate in middle latitudes regions, where the climate is sub-humid, semi-arid continental monsoon.Under present climatic conditions, there should be no active sand dunes in northeastern China. So the appearance of active sand in northeastern China is not due to natural factors,but to extensive land reclamation and cultivation.