995 resultados para Coupled oscillator
Resumo:
In this study, the authors evaluate the (El Niño–Southern Oscillation) ENSO–Asian monsoon interaction in a version of the Hadley Centre coupled ocean–atmosphere general circulation model (CGCM) known as HadCM3. The main focus is on two evolving anomalous anticyclones: one located over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). These two anomalous anticyclones are closely related to the developing and decaying phases of the ENSO and play a crucial role in linking the Asian monsoon to ENSO. It is found that the HadCM3 can well simulate the main features of the evolution of both anomalous anticyclones and the related SST dipoles, in association with the different phases of the ENSO cycle. By using the simulated results, the authors examine the relationship between the WNP/SIO anomalous anticyclones and the ENSO cycle, in particular the biennial component of the relationship. It is found that a strong El Niño event tends to be followed by a more rapid decay and is much more likely to become a La Niña event in the subsequent winter. The twin anomalous anticyclones in the western Pacific in the summer of a decaying El Niño are crucial for the transition from an El Niño into a La Niña. The El Niño (La Niña) events, especially the strong ones, strengthen significantly the correspondence between the SIO anticyclonic (cyclonic) anomaly in the preceding autumn and WNP anticyclonic (cyclonic) anomaly in the subsequent spring, and favor the persistence of the WNP anomaly from spring to summer. The present results suggest that both El Niño (La Niña) and the SIO/WNP anticyclonic (cyclonic) anomalies are closely tied with the tropospheric biennial oscillation (TBO). In addition, variability in the East Asian summer monsoon, which is dominated by the internal atmospheric variability, seems to be responsible for the appearance of the WNP anticyclonic anomaly through an upper-tropospheric meridional teleconnection pattern over the western and central Pacific.
Resumo:
The coupled δ13C-radiocarbon systematics of threeEuropean stalagmites deposited during the Late Glacial and early Holocene were investigated to understand better how the carbon isotope systematics of speleothems respond to climate transitions. The emphasis is on understanding how speleothems may record climate-driven changes in the proportions of biogenic (soil carbon) and limestone bedrock derived carbon. At two of the three sites, the combined δ13C and 14C data argue against greater inputs of limestone carbon as the sole cause of the observed shift to higher δ13C during the cold Younger Dryas. In these stalagmites (GAR-01 from La Garma cave, N. Spain and So-1 from Sofular cave, Turkey), the combined changes in δ13C and initial 14C activities suggest enhanced decomposition of old stored, more recalcitrant, soil carbon at the onset of the warmer early Holocene. Alternative explanations involving gradual temporal changes between open- and closed-system behaviour during the Late Glacial are difficult to reconcile with observed changes in speleothem δ13C and the growth rates. In contrast, a stalagmite from Pindal cave (N. Spain) indicates an abrupt change in carbon inputs linked to local hydrological and disequilibrium isotope fractionation effects, rather than climate change. For the first time, it is shown that while the initial 14C activities of all three stalagmites broadly follow the contemporaneous atmospheric 14C trends (the Younger Dryas atmospheric 14C anomaly can be clearly discerned), subtle changes in speleothem initial 14C activities are linked to climate-driven changes in soil carbon turnover at a climate transition.
Resumo:
The extra-tropical response to El Niño in configurations of a coupled model with increased horizontal resolution in the oceanic component is shown to be more realistic than in configurations with a low resolution oceanic component. This general conclusion is independent of the atmospheric resolution. Resolving small-scale processes in the ocean produces a more realistic oceanic mean state, with a reduced cold tongue bias, which in turn allows the atmospheric model component to be forced more realistically. A realistic atmospheric basic state is critical in order to represent Rossby wave propagation in response to El Niño, and hence the extra-tropical response to El Niño. Through the use of high and low resolution configurations of the forced atmospheric-only model component we show that, in isolation, atmospheric resolution does not significantly affect the simulation of the extra-tropical response to El Niño. It is demonstrated, through perturbations to the SST forcing of the atmospheric model component, that biases in the climatological SST field typical of coupled model configurations with low oceanic resolution can account for the erroneous atmospheric basic state seen in these coupled model configurations. These results highlight the importance of resolving small-scale oceanic processes in producing a realistic large-scale mean climate in coupled models, and suggest that it might may be possible to “squeeze out” valuable extra performance from coupled models through increases to oceanic resolution alone.
Resumo:
The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects in biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating G protein-coupled receptors (GPCRs). At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevents signaling. Conversely, cell-surface peptidases can also generate bioactive peptides that directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signaling. Certain peptidases can signals directly to cells, by cleaving GPCR to initiate intracellular signaling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signaling and mediate downregulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signaling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signaling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signaling in disease.
Resumo:
G protein-coupled receptors (GPCRs) are expressed throughout the nervous system where they regulate multiple physiological processes, participate in neurological diseases, and are major targets for therapy. Given that many GPCRs respond to neurotransmitters and hormones that are present in the extracellular fluid and which do not readily cross the plasma membrane, receptor trafficking to and from the plasma membrane is a critically important determinant of cellular responsiveness. Moreover, trafficking of GPCRs throughout the endosomal system can initiate signaling events that are mechanistically and functionally distinct from those operating at the plasma membrane. This review discusses recent advances in the relationship between signaling and trafficking of GPCRs in the nervous system. It summarizes how receptor modifications influence trafficking, discusses mechanisms that regulate GPCR trafficking to and from the plasma membrane, reviews the relationship between trafficking and signaling, and considers the implications of GPCR trafficking to drug development.
Resumo:
Extracellular signal-regulated kinases 1/2 (ERK1/2) and their substrates, p90 ribosomal S6 kinases (RSKs), phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes, ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. Here, we investigated the role of RSKs in the transcriptomic responses to Gq protein-coupled receptor agonists, endothelin-1, phenylephrine (generic α1-adrenergic receptor agonist) and A61603 (α1A-adrenergic receptor selective). Phospho-ERK1/2 and phospho-RSKs appeared in cardiomyocyte nuclei within 2-3 min of stimulation (endothelin-1>a61603≈phenylephrine). All agonists increased nuclear RSK2, but only endothelin-1 increased nuclear RSK1 content. PD184352 (inhibits ERK1/2 activation) and BI-D1870 (inhibits RSKs) were used to dissect the contribution of RSKs to the endothelin-1-responsive transcriptome. Of 213 RNAs upregulated at 1 h, 51% required RSKs for upregulation whereas 29% required ERK1/2 but not RSKs. The transcriptomic response to phenylephrine overlapped with, but was not identical to, endothelin-1. As with endothelin-1, PD184352 inhibited upregulation of most phenylephrine-responsive transcripts, but the greater variation in effects of BI-D1870 suggests that differential RSK signalling influences global gene expression. A61603 induced similar changes in RNA expression in cardiomyocytes as phenylephrine, indicating that the signal was mediated largely through α1A-adrenergic receptors. A61603 also increased expression of immediate early genes in perfused adult rat hearts and, as in cardiomyocytes, upregulation of the majority of genes was inhibited by PD184352. PD184352 or BI-D1870 prevented the increased surface area induced by endothelin-1 in cardiomyocytes. Thus, RSKs play a significant role in regulating cardiomyocyte gene expression and hypertrophy in response to Gq protein-coupled receptor stimulation.
Resumo:
Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.
Resumo:
Secular trends of daily precipitation characteristics are considered in the transient climate change experiment with a coupled atmosphere-ocean general circulation model ECHAM4/OPYC3 for 1900-2099. The climate forcing is due to increasing concentrations of the greenhouse gases in the atmosphere. Mean daily precipitation, precipitation intensity, probability of wet days and parameters of the gamma distribution are analyzed. Particular attention is paid to the changes of heavy precipitation, Analysis of the annual mean precipitation trends for 1900-1999 revealed general agreement with observations with significant positive trends in mean precipitation over continental areas. In the 2000-2099 period precipitation trend patterns followed the tendency obtained for 1900-1999 but with significantly increased magnitudes. Unlike the annual mean precipitation trends for which negative values were found for some continental areas, the mean precipitation intensity and scale parameter of the fitted gamma distribution increased over all land territories . Negative trends in the number of wet days were found over most of the land areas except high latitudes in the Northern Hemisphere. The shape parameter of the gamma distribution in general revealed a slight negative trend in the areas of the precipitation increase. Investigation of daily precipitation revealed an unproportional increase of heavy precipitation events for the land areas including local maxima in Europe and the eastern United States.
Resumo:
The Asian summer monsoon response to global warming is investigated by a transient green-house warming integration with the ECHAM4/OPYC3 CGCM. It is demonstrated that increases of greenhouse gas concentrations intensify the Asian summer monsoon and its variability. The intensified monsoon results mainly from an enhanced land-sea contrast and a northward shift of the convergence zone. A gradual increase of the monsoon variability is simulated from year 2030 onwards. It seems to be connected with the corresponding increase of the sea surface temperature variability over the tropical Pacific.
Resumo:
The time-dependent climate response to changing concentrations of greenhouse gases and sulfate aerosols is studied using a coupled general circulation model of the atmosphere and the ocean (ECHAM4/OPYC3). The concentrations of the well-mixed greenhouse gases like CO2, CH4, N2O, and CFCs are prescribed for the past (1860–1990) and projected into the future according to International Panel on Climate Change (IPCC) scenario IS92a. In addition, the space–time distribution of tropospheric ozone is prescribed, and the tropospheric sulfur cycle is calculated within the coupled model using sulfur emissions of the past and projected into the future (IS92a). The radiative impact of the aerosols is considered via both the direct and the indirect (i.e., through cloud albedo) effect. It is shown that the simulated trend in sulfate deposition since the end of the last century is broadly consistent with ice core measurements, and the calculated radiative forcings from preindustrial to present time are within the uncertainty range estimated by IPCC. Three climate perturbation experiments are performed, applying different forcing mechanisms, and the results are compared with those obtained from a 300-yr unforced control experiment. As in previous experiments, the climate response is similar, but weaker, if aerosol effects are included in addition to greenhouse gases. One notable difference to previous experiments is that the strength of the Indian summer monsoon is not fundamentally affected by the inclusion of aerosol effects. Although the monsoon is damped compared to a greenhouse gas only experiment, it is still more vigorous than in the control experiment. This different behavior, compared to previous studies, is the result of the different land–sea distribution of aerosol forcing. Somewhat unexpected, the intensity of the global hydrological cycle becomes weaker in a warmer climate if both direct and indirect aerosol effects are included in addition to the greenhouse gases. This can be related to anomalous net radiative cooling of the earth’s surface through aerosols, which is balanced by reduced turbulent transfer of both sensible and latent heat from the surface to the atmosphere.
Resumo:
ECHO is a new global coupled ocean-atmosphere general circulation model (GCM), consisting of the Hamburg version of the European Centre atmospheric GCM (ECHAM) and the Hamburg Primitive Equation ocean GCM (HOPE). We performed a 20-year integration with ECHO. Climate drift is significant, but typical annual mean errors in sea surface temperature (SST) do not exceed 2° in the open oceans. Near the boundaries, however, SST errors are considerably larger. The coupled model simulates an irregular ENSO cycle in the tropical Pacific, with spatial patterns similar to those observed. The variability, however, is somewhat weaker relative to observations. ECHO also simulates significant interannual variability in mid-latitudes. Consistent with observations, variability over the North Pacific can be partly attributed to remote forcing from the tropics. In contrast, the interannual variability over the North Atlantic appears to be generated locally.
Resumo:
In this study, we investigated the impact of global warming on the variabilities of large-scale interannual and interdecadal climate modes and teleconnection patterns with two long-term integrations of the coupled general circulation model of ECHAM4/OPYC3 at the Max-Planck-Institute for Meteorology, Hamburg. One is the control (CTRL) run with fixed present-day concentrations of greenhouse gases. The other experiment is a simulation of transient greenhouse warming, named GHG run. In the GHG run the averaged geopotential height at 500 hPa is increased significantly, and a negative phase of the Pacific/North American (PNA) teleconnection-like distribution pattern is intensified. The standard deviation over the tropics (high latitudes) is enhanced (reduced) on the interdecadal time scales and reduced (enhanced) on the interannual time scales in the GHG run. Except for an interdecadal mode related to the Southern Oscillation (SO) in the GHG run, the spatial variation patterns are similar for different (interannual + interdecadal, interannual, and interdecadal) time scales in the GHG and CTRL runs. Spatial distributions of the teleconnection patterns on the interannual and interdecadal time scales in the GHG run are also similar to those in the CTRL run. But some teleconnection patterns show linear trends and changes of variances and frequencies in the GHG run. Apart from the positive linear trend of the SO, the interdecadal modulation to the El Niño/SO cycle is enhanced during the GHG 2040 ∼ 2099. This is the result of an enhancement of the Walker circulation during that period. La Niña events intensify and El Niño events relatively weaken during the GHG 2070 ∼ 2090. It is interesting to note that with increasing greenhouse gas concentrations the relation between the SO and the PNA pattern is reversed significantly from a negative to a positive correlation on the interdecadal time scales and weakened on the interannual time scales. This suggests that the increase of the greenhouse gas concentrations will trigger the nonstationary correlation between the SO and the PNA pattern both on the interdecadal and interannual time scales.
Resumo:
The Asian winter monsoon (AWM) response to the global warming was investigated through a long-term integration of the transient greenhouse warming with the ECHAM4/OPYC3 CGCM. The physics of the response was studied through analyses of the impact of the global warming on the variations of the ocean and land contrast near the ground in the Asian and western Pacific region and the east Asian trough and jet stream in the middle and upper troposphere. Forcing of transient eddy activity on the zonal circulation over the Asian and western Pacific region was also analyzed. It is found that in the global warming scenario the winter northeasterlies along the Pacific coast of the Eurasian continent weaken systematically and significantly, and intensity of the AWM reduces evidently, but the AWM variances on the interannual and interdecadal scales are not affected much by the global warming. It is suggested that the global warming makes the climate over the most part of Asia to be milder with enhanced moisture in winter. In the global warming scenario the contrasts of the sea level pressure and the near-surface temperature between the Asian continent and the Pacific Ocean become significantly smaller, northward and eastward shifts and weakening of the east Asian trough and jet stream in the middle and upper troposphere are found. As a consequence, the cold air in the AWM originating from the east Asian trough and high latitudes is less powerful. In addition, feedback of the transient activity also makes a considerable contribution to the higher-latitude shift of the jet stream over the North Pacific in the global warming scenario.
Resumo:
Evaluating CCMs with the presented framework will increase our confidence in predictions of stratospheric ozone change.